Ti-24Nb-4Zr-8Sn (Ti2448), a new β-type Ti alloy, consists of nontoxic elements and exhibits a low uniaxial tensile elastic modulus of approximately 45 GPa for biomedical implant applications. Nevertheless, the bio-corrosion resistance and biocompatibility of Ti2448 alloys must be improved for long-term clinical use. In this study, a rapid electrochemical anodization treatment was used on Ti2448 alloys to enhance the bio-corrosion resistance and bone cell responses by altering the surface characteristics. The proposed anodization process produces a unique hybrid oxide layer (thickness 50–120 nm) comprising a mesoporous outer section and a dense inner section. Experiment results show that the dense inner section enhances the bio-corrosion resistance. Moreover, the mesoporous surface topography, which is on a similar scale as various biological species, improves the wettability, protein adsorption, focal adhesion complex formation and bone cell differentiation. Outside-in signals can be triggered through the interaction of integrins with the mesoporous topography to form the focal adhesion complex and to further induce osteogenic differentiation pathway. These results demonstrate that the proposed electrochemical anodization process for Ti2448 alloys with a low uniaxial tensile elastic modulus has the potential for biomedical implant applications.
Although polyetheretherketone (PEEK) is becoming more widely used in dentistry applications, little is known about how aging will affect this material. Therefore, this study aimed to investigate the influence of an aging treatment on fracture characteristics of PEEK dental crowns. Additionally, the impact of the addition of titanium dioxide (TiO2) into PEEK was examined. Two types of commercial PEEK discs were used in this study, including TiO2-free and 20% TiO2-containing PEEK. The PEEK dental crowns were fabricated and aging-treated at 134 °C and 0.2 MPa for 5 h in accordance with the ISO 13356 specification before being cemented on artificial tooth abutments. The fracture loads of all crown samples were measured under compression tests. Results demonstrated that adding TiO2 enhanced the fracture load of PEEK crowns compared to TiO2-free PEEK crowns before the aging treatment. However, the aging treatment decreased the fracture load of TiO2-containing PEEK crowns while increasing the fracture load of TiO2-free PEEK crowns. The fracture morphology of TiO2-containing PEEK crowns revealed finer feather shapes than that of the TiO2-free PEEK crowns. We concluded that adding TiO2 increased the fracture load of PEEK crowns without aging treatment. Still, the aging treatment influenced the fracture load and microscopic fracture morphology of PEEK crowns, depending on the addition of TiO2.
Artificial intelligence (AI) is a rapidly evolving field of computer science that involves the development of computational programs that can mimic human intelligence. In particular, machine learning and deep learning models have enabled the identification and grouping of patterns within data, leading to the development of AI systems that have been applied in various areas of hematology, including digital pathology, alpha thalassemia patient screening, cytogenetics, immunophenotyping, and sequencing. These AI-assisted methods have shown promise in improving diagnostic accuracy and efficiency, identifying novel biomarkers, and predicting treatment outcomes. However, limitations such as limited databases, lack of validation and standardization, systematic errors, and bias prevent AI from completely replacing manual diagnosis in hematology. In addition, the processing of large amounts of patient data and personal information by AI poses potential data privacy issues, necessitating the development of regulations to evaluate AI systems and address ethical concerns in clinical AI systems. Nonetheless, with continued research and development, AI has the potential to revolutionize the field of hematology and improve patient outcomes. To fully realize this potential, however, the challenges facing AI in hematology must be addressed and overcome.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.