An evolutionary recurrent network which automates the design of recurrent neural/fuzzy networks using a new evolutionary learning algorithm is proposed in this paper. This new evolutionary learning algorithm is based on a hybrid of genetic algorithm (GA) and particle swarm optimization (PSO), and is thus called HGAPSO. In HGAPSO, individuals in a new generation are created, not only by crossover and mutation operation as in GA, but also by PSO. The concept of elite strategy is adopted in HGAPSO, where the upper-half of the best-performing individuals in a population are regarded as elites. However, instead of being reproduced directly to the next generation, these elites are first enhanced. The group constituted by the elites is regarded as a swarm, and each elite corresponds to a particle within it. In this regard, the elites are enhanced by PSO, an operation which mimics the maturing phenomenon in nature. These enhanced elites constitute half of the population in the new generation, whereas the other half is generated by performing crossover and mutation operation on these enhanced elites. HGAPSO is applied to recurrent neural/fuzzy network design as follows. For recurrent neural network, a fully connected recurrent neural network is designed and applied to a temporal sequence production problem. For recurrent fuzzy network design, a Takagi-Sugeno-Kang-type recurrent fuzzy network is designed and applied to dynamic plant control. The performance of HGAPSO is compared to both GA and PSO in these recurrent networks design problems, demonstrating its superiority.
This paper proposes an evolutionary-group-based particle-swarm-optimization (EGPSO) algorithm for fuzzy-controller (FC) design. The EGPSO uses a group-based framework to incorporate crossover and mutation operations into particle-swarm optimization. The EGPSO dynamically forms different groups to select parents in crossover operations, particle updates, and replacements. An adaptive velocity-mutated operation (AVMO) is incorporated to improve search ability. The EGPSO is applied to design all of the free parameters in a zero-order Takagi-Sugeno-Kang (TSK)-type FC. The objective of EGPSO is to improve fuzzy-control accuracy and design efficiency. Comparisons with different population-based optimizations of fuzzy-control problems demonstrate the superiority of EGPSO performance. In particular, the EGPSO-designed FC is applied to mobile-robot navigation in unknown environments. In this application, the robot learns to follow object boundaries through an EGPSO-designed FC. A simple learning environment is created to build this behavior without an exhaustive collection of input-output training pairs in advance. A behavior supervisor is proposed to combine the boundary-following behavior and the target-seeking behavior for navigation, and the problem of dead cycles is considered. Successful mobile-robot navigation in simulation and real environments verifies the EGPSO-designed FC-navigation approach
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.