A nanoparticle-conjugated cancer drug provides a novel strategy for cancer therapy. In this study, we manipulated nanodiamond (ND), a carbon nanomaterial, to covalently link paclitaxel for cancer drug delivery and therapy. Paclitaxel was bound to the surface of 3-5 nm sized ND through a succession of chemical modifications. The ND-paclitaxel conjugation was measured by atomic force microscope and nuclear magnetic resonance spectroscopy, and confirmed with infrared spectroscopy by the detection of deuterated paclitaxel. Treatment with 0.1-50 microg ml(-1) ND-paclitaxel for 48 h significantly reduced the cell viability in the A549 human lung carcinoma cells. ND-paclitaxel induced both mitotic arrest and apoptosis in A549 cells. However, ND alone or denatured ND-paclitaxel (after treatment with strong alkaline solution, 1 M NaOH) did not induce the damage effects on A549 cells. ND-paclitaxel was taken into lung cancer cells in a concentration-dependent manner using flow cytometer analysis. The ND-paclitaxel particles were located in the microtubules and cytoplasm of A549 cells observed by confocal microscopy. Furthermore, ND-paclitaxel markedly blocked the tumor growth and formation of lung cancer cells in xenograft SCID mice. Together, we provide a functional covalent conjugation of ND-paclitaxel, which can be delivered into lung carcinoma cells and preserves the anticancer activities on the induction of mitotic blockage, apoptosis and anti-tumorigenesis.
Diamond has received increasing attention for its promising biomedical applications. The material is highly biocompatible and can be easily conjugated with bioactive molecules. Recently, nanoscale diamond has been applied as light scattering labels and luminescent optical markers. The luminescence, arising from photoexcitation of colour centres, can be substantially enhanced when type Ib diamond nanocrystals are bombarded by a high-energy particle beam and then annealed to form negatively charged nitrogen-vacancy centres. The centre absorbs strongly at 560 nm, fluoresces efficiently in the far-red region and is exceptionally photostable (without photoblinking and photobleaching). It is an ideal candidate for long-term imaging and tracking in complex cellular environments. This review summarizes recent advances in the development of fluorescent nanodiamonds for optical bioimaging with single particle sensitivity and nanometric resolution.
Surface-graphitized nanodiamonds (NDs) are promising hybrid nanomaterials which appear to combine core properties of diamond with surface properties of graphene-based materials. Here we demonstrate that NDs covered by graphene islands, so-called Fullerene-Like Reconstructions (FLRs), are sensitive to hole doping by molecular oxygen in water. NDs covered by FLRs (NDs-FLRs) are prepared by annealing under vacuum of detonation NDs at 750 °C. We propose that oxygen hole doping is promoted on FLRs due to a unique electronic interaction between the diamond core and the outer graphene layer. As a consequence, NDs-FLRs exhibit positive zeta potential in water, unlike NDs surrounded by several graphitic layers. Surface hole-doped NDs may be promising nanomaterials for new electronic and biomedical applications.
We explored a very interesting gold nanoparticle system-pegylated gold in colloidal solution-and analyzed its uptake by mice colorectal adenocarcinoma CT26 tumor cells and the impact on the cell's response to x-ray irradiation. We found that exposure to polyethylene glycol (PEG) modified ('pegylated') 4.7 ± 2.6 nm gold nanoparticles synthesized by a novel synchrotron-based method enhances the response of CT26 cells to x-ray irradiation. Transmission electron microscopy (TEM) and confocal microscopy revealed that substantial amounts of such nanoparticles are taken up and absorbed by the cells and this conclusion is supported by quantitative induced coupled plasma (ICP) results. Standard tests indicated that the internalized particles are highly biocompatible but strongly enhance the cell damage induced by x-ray irradiation. Synchrotron radiation Fourier transform infrared (SR-FTIR) spectromicroscopy analyzed the chemical aspects of this phenomenon: the appearance of C = O stretching bond spectral features could be used as a marker for cell damage and confirmed the enhancement of the radiation-induced toxicity for cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.