Melatonin exerts antimetastatic effects on liver and breast cancer and also inhibits matrix metalloproteinase (MMP) activity. However, the detailed impacts and underlying mechanisms of melatonin on oral cancer cell metastasis are still unclear. This study showed that melatonin attenuated the 12-O-tetradecanoylphorbol-13-acetate-induced migration of oral cancer cell lines, HSC-3 and OECM-1. Zymography, quantitative real-time PCR, and Western blotting analyses revealed that melatonin lessened MMP-9 enzyme activity as well as the expression of MMP-9 mRNA and protein. Furthermore, melatonin suppressed the phosphorylation of the ERK1/2 signalling pathway, which dampened MMP-9 gene transcription by affecting the expression of transcriptional coactivators, such as CREB-binding protein (CREBBP) and E1A binding protein p300 (EP300), and decreasing histone acetylation in HSC-3 and OECM-1 cells. Examinations on clinical samples exhibited that MMP-9, CREBBP, and EP300 were significantly increased in oral cancer tissues. Moreover, the relative level of CREBBP was positively correlated with the expression of MMP-9 and EP300. In conclusion, we demonstrated that melatonin inhibits the motility of HSC-3 and OECM-1 cells in vitro through a molecular mechanism that involves attenuation of MMP-9 expression and activity mediated by decreased histone acetylation.
Genetic and acquired factors are thought to be interrelated and imperative to estimate the risk and prognosis of oral squamous cell carcinoma (OSCC). HOX transcript antisense intergenic RNA ( HOTAIR) plays crucial roles in gene regulation and is regulated in a variety of cancers. Polymorphisms in HOTAIR have been recently linked to the predisposition to diverse malignancies. In the present study, we aimed to evaluate the influences of HOTAIR gene polymorphisms, combined with environmental triggers, on the susceptibility to oral tumorigenesis. Four single-nucleotide polymorphisms of the HOTAIR gene- rs920778, rs1899663, rs4759314, and rs12427129-were tested in 1,200 control participants and 907 patients with OSCC. We detected a significant association of rs1899663 with the risk of OSCC (adjusted odds ratio, 2.227; 95% confidence interval [95% CI], 1.197 to 4.146; P = 0.012) after adjustment for 3 potential confounders: smoking, betel quid chewing, and alcohol consumption. In further analyses where habitual exposure to each of 3 environmental factors was excluded, we found that, in addition to rs1899663, non-betel quid users who carried the polymorphic allele of rs920778 were more prone to develop OSCC than were those homozygous for wild-type allele (TC: odds ratio [OR], 1.472; 95% CI, 1.069 to 2.029; P = 0.018; TC+CC: OR, 1.448; 95% CI, 1.060 to 1.977; P = 0.020). Moreover, in exploring the relationship between HOTAIR gene polymorphisms and the clinical status of only patients with OSCC who were non-betel quid chewers (excluding the advanced clinical stage), we found that rs920778 and rs4759314 were correlated with the development of large-size tumors (OR, 1.891; 95% CI, 1.027 to 3.484; P = 0.04) and increased lymph node metastasis (OR, 4.140; 95% CI, 1.785 to 9.602; P = 0.001), respectively. Further functional assessments link rs920778 to the regulation of HOTAIR expression and epigenetic status. Our results reveal an interactive effect of HOTAIR gene polymorphisms and betel quid chewing on the development and progression of oral cancer.
Salmonella enterica serovar Typhimurium is a common cause of nontyphoidal salmonellosis in humans and animals. Multidrug-resistant serovar Typhimurium phage type DT104, which emerged in the 1990s, has become widely distributed in many countries. A total of 104 clinical isolates of Salmonella serogroup B were collected from three major hospitals in Taiwan during 1997 to 2003 and were examined by a multiplex PCR targeting the resistance genes and the spv gene of the virulence plasmid. A total of 51 isolates (49%) were resistant to all drugs (ACSSuT [resistance to ampicillin, chloramphenicol, streptomycin, sulfonamide, and tetracycline]), and all contained a 1.25-kb PCR fragment of integron that is part of the 43-kb Salmonella genomic island 1 (SGI1). The second group was resistant to SSu (28%), and the third was susceptible to all five drugs (13%). Fifty-nine isolates were serotyped to be serovar Typhimurium by the tube agglutination method using H antisera. The virulence plasmid was found in 54 (91.5%) of the 59 serovar Typhimurium isolates. A majority (94.1%) of the Salmonella serogroup B isolates with the ACSSuT resistance pattern harbored a virulence plasmid. Phage typing identified three major phage types: DT104, DT120, and U302. Analysis of the isolates by pulsed-field gel electrophoresis showed six genotypes. We found two genotypes in DT104 strains, two in DT120, and the other two in U302. The presence of a monophasic serovar (4,5,12:i:؊) has added difficulty in the determination of the serovars of multidrug-resistant Salmonella serogroup B isolates. Nevertheless, the multiplex PCR devised in the present study appears to be efficient and useful in the rapid identification of ACSSuT-type serovar Typhimurium with SGI1, irrespective of their phage types.
The inhibitory effect of melatonin on cancer cell dissemination is well established, yet the functional involvement of lncRNAs in melatonin signaling remains poorly understood. In this study, we identified a melatonin‐attenuated lncRNA acting as a potential melatonin‐regulated oral cancer stimulator (MROS‐1). Downregulation of MROS‐1 by melatonin suppressed TPA‐induced oral cancer migration through replenishing the protein expression of prune homolog 2 (PRUNE2), which functioned as a tumor suppressor in oral cancer. Melatonin‐mediated MROS‐1/PRUNE2 expression and cell motility in oral cancer were regulated largely through the activation of JAK‐STAT pathway. In addition, MROS‐1, preferentially localized in the nuclei, promoted oral cancer migration in an epigenetic mechanism in which it modulates PRUNE2 expression by interacting with a member of the DNA methylation machinery, DNA methyltransferase 3A (DNMT3A). Higher methylation levels of PRUNE2 promoter were associated with nodal metastases and inversely correlated with PRUNE2 expression in head and neck cancer. Collectively, these findings suggest that MROS‐1, serving as a functional mediator of melatonin signaling, could predispose patients with oral cancer to metastasize and may be implicated as a potential target for antimetastatic therapies.
Oral squamous cell carcinoma (OSCC) is a common malignancy that has been causally associated with both hereditary and acquired factors. The high mobility group box 1 (HMGB1) gene plays an important role as a DNA chaperone to help maintain nuclear homeostasis. Altered expression of HMGB1 has been implicated in a wide range of pathological processes, including inflammation and cancer. The present study explores the impact of HMGB1 gene polymorphisms, combined with environmental risks regarding susceptibility to oral tumorigenesis. Four single-nucleotide polymorphisms (SNPs) of the HMGB1 gene, rs1412125, rs2249825, rs1045411, and rs1360485, were evaluated in 1,200 normal controls and 772 patients with OSCC. We found an association between the wild-type allele of rs1045411 and genotypes CT and CT/TT (AOR=0.754, 95% CI=0.582-0.978 and AOR=0.778, 95% CI=0.609-0.995, respectively). Additionally, bioinformatics analysis was used to characterize the functional relevance of these variants for the miRNA-505-5p binding site and transcriptional regulation by the HMGB1 3’-UTR and promoter regions. Moreover, in considering behavioral exposure to environmental carcinogens, the presence of the four HMGB1 SNPs, combined with/without betel quid chewing and smoking showed, profoundly synergistic effects on the risk of OSCC. In conclusion, we present a potential clinical relevance for HMGB1 variants in OSCC, as well as associations between HMGB1 polymorphisms, haplotypes and environmental risk factors. The finding may help in development of optimal therapeutic approaches for OSCC patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.