Using in silico drug screening by Connectivity Map followed by empirical validations, we repurposed an existing phenothiazine-like antipsychotic drug, trifluoperazine, as a potential anti-CSC agent that could overcome epidermal growth factor receptor-tyrosine kinase inhibitor and chemotherapy resistance.
Pin1 is a peptidyl-prolyl isomerase which plays a critical role in many diseases including cancer and Alzheimer's disease. The essential role of Pin1 is to affect stability, localization or function of phosphoproteins by catalyzing structural changes. Among the collection of Pin1 substrates, many have been shown to be involved in regulating cell cycle progression. The cell cycle disorder caused by dysregulation of these substrates is believed to be a common phenomenon in cancer. A number of recent studies have revealed possible functions of several important Pin1-binding cell cycle regulators. Investigating the involvement of Pin1 in the cell cycle may assist in the development of future cancer therapeutics. In this review, we summarize current knowledge regarding the network of Pin1 substrates and Pin1 regulators in cell cycle progression. In G1/S progression, cyclin D1, RB, p53, p27, and cyclin E are all well-known cell cycle regulators that are modulated by Pin1. During G2/M transition, our lab has shown that Aurora A suppresses Pin1 activity through phosphorylation at Ser16 and cooperates with hBora to modulate G2/M transition. We conclude that Pin1 may be thought of as a molecular timer which modulates cell cycle progression networks.
Triple-negative breast cancer (TNBC) patients usually lead to poor prognosis and survival because of metastasis. The major sites for TNBC metastasis include the lungs, brain, liver, and bone. Long non-coding RNAs (lncRNAs) are non-protein-coding transcripts longer than 200 nucleotides and have been reported as important regulators in BC metastasis. However, the underlying mechanisms for lncRNAs regulating TNBC metastasis are not fully understood. Here we found that linc-ZNF469-3 was highly expressed in lung-metastatic LM2-4175 TNBC cells and overexpression of linc-ZNF469-3 enhanced invasion ability and stemness properties in vitro and lung metastasis in vivo. Furthermore, we found linc-ZNF469-3 physically interacted with miR-574-5p and overexpression of miR-574-5p attenuated ZEB1 expression. Importantly, endogenous high expressions of linc-ZNF469-3 and ZEB1 were correlated with tumor recurrence in TNBC patients with lung metastasis. Taken together, our findings suggested that linc-ZNF469-3 promotes lung metastasis of TNBC through miR-574-5p-ZEB1 signaling axis and may be used as potential prognostic marker for TNBC patients.
BackgroundObesity is a multifactorial disease that arises from complex interactions between genetic predisposition and environmental factors. Leptin is central to the regulation of energy metabolism and control of body weight in mammals.Methodology/Principal FindingsTo better recapitulate the complexity of human obesity syndrome, we applied N-ethyl-N-nitrosourea (ENU) mutagenesis in combination with a set of metabolic assays in screening mice for obesity. Mapping revealed linkage to the chromosome 6 within a region containing mouse Leptin gene. Sequencing on the candidate genes identified a novel T-to-A mutation in the third exon of Leptin gene, which translates to a V145E amino acid exchange in the leptin propeptide. Homozygous Leptin145E/145E mutant mice exhibited morbid obesity, accompanied by adipose hypertrophy, energy imbalance, and liver steatosis. This was further associated with severe insulin resistance, hyperinsulinemia, dyslipidemia, and hyperleptinemia, characteristics of human obesity syndrome. Hypothalamic leptin actions in inhibition of orexigenic peptides NPY and AgRP and induction of SOCS1 and SOCS3 were attenuated in Leptin145E/145E mice. Administration of exogenous wild-type leptin attenuated hyperphagia and body weight increase in Leptin145E/145E mice. However, mutant V145E leptin coimmunoprecipitated with leptin receptor, suggesting that the V145E mutation does not affect the binding of leptin to its receptor. Molecular modeling predicted that the mutated residue would form hydrogen bond with the adjacent residues, potentially affecting the structure and formation of an active complex with leptin receptor within that region.Conclusions/SignificanceThus, our evolutionary, structural, and in vivo metabolic information suggests the residue 145 as of special function significance. The mouse model harboring leptin V145E mutation will provide new information on the current understanding of leptin biology and novel mouse model for the study of human obesity syndrome.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.