The evolution of land flora transformed the terrestrial environment. Land plants evolved from an ancestral charophycean alga from which they inherited developmental, biochemical, and cell biological attributes. Additional biochemical and physiological adaptations to land, and a life cycle with an alternation between multicellular haploid and diploid generations that facilitated efficient dispersal of desiccation tolerant spores, evolved in the ancestral land plant. We analyzed the genome of the liverwort Marchantia polymorpha, a member of a basal land plant lineage. Relative to charophycean algae, land plant genomes are characterized by genes encoding novel biochemical pathways, new phytohormone signaling pathways (notably auxin), expanded repertoires of signaling pathways, and increased diversity in some transcription factor families. Compared with other sequenced land plants, M. polymorpha exhibits low genetic redundancy in most regulatory pathways, with this portion of its genome resembling that predicted for the ancestral land plant. PAPERCLIP.
Rhodopseudomonas palustris strains PS3 and YSC3 are purple non-sulfur phototrophic bacteria isolated from Taiwanese paddy soils. PS3 has beneficial effects on plant growth and enhances the uptake efficiency of applied fertilizer nutrients. In contrast, YSC3 has no significant effect on plant growth. The genomic structures of PS3 and YSC3 are similar; each contains one circular chromosome that is 5,269,926 or 5,371,816 bp in size, with 4,799 or 4,907 protein-coding genes, respectively. In this study, a large class of genes involved in chemotaxis and motility was identified in both strains, and genes associated with plant growth promotion, such as nitrogen fixation-, IAA synthesis- and ACC deamination-associated genes, were also identified. We noticed that the growth rate, the amount of biofilm formation, and the relative expression levels of several chemotaxis-associated genes were significantly higher for PS3 than for YSC3 upon treatment with root exudates. These results indicate that PS3 responds better to the presence of plant hosts, which may contribute to the successful interactions of PS3 with plant hosts. Moreover, these findings indicate that the existence of gene clusters associated with plant growth promotion is required but not sufficient for a bacterium to exhibit phenotypes associated with plant growth promotion.
Studies on the halotolerance of bacteria are attractive to the fermentation industry. However, a lack of sufficient genomic information has precluded an investigation of the halotolerance of Halomonas beimenensis. Here, we describe the molecular mechanisms of saline adaptation in H. beimenensis based on high-throughput omics and Tn5 transposon mutagenesis. The H. beimenensis genome is 4.05 Mbp and contains 3,807 genes, which were sequenced using short and long reads obtained via deep sequencing. Sixteen Tn5 mutants with a loss of halotolerance were identified. Orthologs of the mutated genes, such as nqrA, trkA, atpC, nadA, and gdhB, have significant biological functions in sodium efflux, potassium uptake, hydrogen ion transport for energy conversion, and compatible solute synthesis, which are known to control halotolerance. Other genes, such as spoT, prkA, mtnN, rsbV, lon, smpB, rfbC, rfbP, tatB, acrR1, and lacA, function in cellular signaling, quorum sensing, transcription/translation, and cell motility also shown critical functions for promoting a halotolerance. In addition, KCl application increased halotolerance and potassium-dependent cell motility in a high-salinity environment. Our results demonstrated that a combination of omics and mutagenesis could be used to facilitate the mechanistic exploitation of saline adaptation in H. beimenensis, which can be applied for biotechnological purposes.
BackgroundCarbapenem-resistance in Acinetobacter baumannii has gradually become a global challenge. To identify the genes involved in carbapenem resistance in A. baumannii, the transcriptomic responses of the completely sequenced strain ATCC 17978 selected with 0.5 mg/L (IPM-2 m) and 2 mg/L (IPM-8 m) imipenem were investigated using RNA-sequencing to identify differences in the gene expression patterns.ResultsA total of 88 and 68 genes were differentially expressed in response to IPM-2 m and IPM-8 m selection, respectively. Among the expressed genes, 50 genes were highly expressed in IPM-2 m, 30 genes were highly expressed in IPM-8 m, and 38 genes were expressed common in both strains. Six groups of genes were simultaneously expressed in IPM-2 m and IPM-8 m mutants. The three gene groups involved in DNA recombination were up-regulated, including recombinase, transposase and DNA repair, and beta-lactamase OXA-95 and homologous recombination. The remaining gene groups involved in biofilm formation were down-regulated, including quorum sensing, secretion systems, and the csu operon. The antibiotic resistance determinants, including RND efflux transporters and multidrug resistance pumps, were over-expressed in response to IPM-2 m selection, followed by a decrease in response to IPM-8 m selection. Among the genes over-expressed in both strains, blaOXA-95, previously clustered with the blaOXA-51-like family, showed 14-fold (IPM-2 m) to 330-fold (IPM-8 m) over-expression. The expression of blaOXA-95 in IPM-2 m and IPM-8 m cells was positively correlated with the rate of imipenem hydrolysis, as demonstrated through Liquid Chromatography-Mass Spectrometry/Mass Spectrometry, suggesting that blaOXA-95 plays a critical role in conferring carbapenem resistance. In addition, A. baumannii shows an inverse relationship between carbapenem resistance and biofilm production.ConclusionGene recombination and blaOXA-95 play critical roles in carbapenem resistance in A. baumannii. Taken together, the results of the present study provide a foundation for future studies of the network systems associated with carbapenem resistance.Electronic supplementary materialThe online version of this article (doi:10.1186/1471-2164-15-815) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.