At the time of the COVID-19 pandemic, the impact of lockdown measures highlights changes in terms of sounds and noises present in the everyday life. The present paper deals with this peculiar and unexpected scenario as studied by means of an online survey consisting of 18 questions and distributed to residents in the Italian territory. For studying the unprecedented effect of the pandemic, participants were asked to fill the questionnaire, providing personal data, describing context and characteristics of the house in which they live and making a comparison of the lockdown soundscape with the pre-lockdown one. About four hundred questionnaires have been collected and analysed in order to define correlations between personal and perception variables. Using logistic regression models, changes have been studied during the two abovementioned periods. It has been observed that the perception of traffic noise has increased for people over 35 years old and the noise produced by the neighbourhood has been more statistically significant for employed respondents. Future outlook might provide the spread of the questionnaire in other countries for a global evaluation of the data, to be also acquired with reference to the after-lockdown period.
Abstract:Concerning quiet areas, the definition provided by the Environmental Noise Directive (END) is intended to preserve the acoustic environment in those areas where it is considered good, according to general indicators and limits. However, the END is not clear enough to allow appropriate assessment and management in urban environments. The aim of QUADMAP project was to deliver a method and guidelines for the identification, delineation, characterization, improvement and management of Quiet Urban Areas (QUAs) as defined by the END. The Project also wanted to help clarify the definition of a QUA, its meaning and its added value for cities in terms of health, safety and lowering stress levels. In this article, after an introduction of the current European scenario on QUAs, the main aspects of the methodology introduced for the selection, analysis and management of QUAs are described. Eventually, the major results achieved by the Project, in terms of the guideline on QUAs, the implemented interventions and the achieved benefits, are reported and discussed.
As a scientific consequence of the spread of the COVID-19 pandemic, several initiatives have taken place in order to monitor noise levels trends before and after the lock down phase in several Italian and European cities. In Monza (Italy), since June 2017, a new smart noise monitoring system consisting of 10 sensors developed in the frame of the LIFE MONZA project is continuously measuring acoustic data every second and transmitting them hourly to a dedicated server. The sensors are located both along a main street of the Libertà district characterised by high traffic flows and along secondary streets of the district; they are positioned on (preferably sensitive) buildings facades and on streetlamps.In the present paper results of a study concerning changes occurred in noise levels trends before and during the lock down phase for the smart sensors are presented, together with a comparison with noise levels collected by the same sensors in the equivalent months of the previous year. Some preliminary considerations regarding the reliability of the sensors themselves are also provided.
Versatile, cheap and non-invasive 3D acquisition techniques have received attention and interest in the field of biomedicine in recent years as the accuracy of developed devices permits the acquisition of human body shapes in detail. Interest in these technologies derives from the fact that they have the potential to overcome some limitations of invasive techniques (CT, X-rays, etc.) and those based on 2D photographs for the acquisition of 3D geometry. However, the data acquired from the 3D scanner cannot be directly used but need to be processed as they consist of 3D coordinates of the acquired points. Therefore, many researchers have proposed different algorithms which recognise the shape of human body and/or its features when starting from a 3D point cloud. Among all possible human body features to be evaluated, symmetry results the most relevant one. Accordingly, this survey systematically investigates the methods proposed in the literature to recognise 2D symmetry by the symmetry line and bilateral symmetry by the symmetry plane. The paper also analyses qualitative comparisons among the proposed methods to provide a guide for both practitioners and researchers.
The introduction of Low Emission Zones, urban areas subject to road traffic restrictions in order to ensure compliance with the air pollutants limit values set by the European Directive on ambient air quality (2008/50/EC), is a common and well-established action in the administrative government of cities. The impacts on air quality improvement are widely analysed, whereas the effects and benefits concerning the noise have not been addressed in a comprehensive manner. As a consequence, the definition, the criteria for the analysis and the management methods of a Noise Low Emission Zone are not clearly expressed and shared yet. The LIFE MONZA project (Methodologies fOr Noise low emission Zones introduction And management - LIFE15 ENV/IT/000586) addresses these issues. The first objective of the project, co-funded by the European Commission, is to introduce an easy-replicable method for the identification and the management of the Noise Low Emission Zone, an urban area subject to traffic restrictions, whose impacts and benefits regarding noise issues will be analyzed and tested in the pilot area of the city of Monza, located in Northern Italy. Background conditions, structure, objectives of the project and actions’ progress will be discussed in this article.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.