In this paper, a model is proposed of the pathophysiological processes of COVID-19 starting from the infection of human type II alveolar epithelial cells (pneumocytes) by SARS-CoV-2 and culminating in the development of ARDS. The innate immune response to infection of type II alveolar epithelial cells leads both to their death by apoptosis and pyroptosis and to alveolar macrophage activation. Activated macrophages secrete proinflammatory cytokines and chemokines and tend to polarise into the inflammatory M1 phenotype. These changes are associated with activation of vascular endothelial cells and thence the recruitment of highly toxic neutrophils and inflammatory activated platelets into the alveolar space. Activated vascular endothelial cells become a source of proinflammatory cytokines and reactive oxygen species (ROS) and contribute to the development of coagulopathy, systemic sepsis, a cytokine storm and ARDS. Pulmonary activated platelets are also an important source of proinflammatory cytokines and ROS, as well as exacerbating pulmonary neutrophil-mediated inflammatory responses and contributing to systemic sepsis by binding to neutrophils to form platelet-neutrophil complexes (PNCs). PNC formation increases neutrophil recruitment, activation priming and extraversion of these immune cells into inflamed pulmonary tissue, thereby contributing to ARDS. Sequestered PNCs cause the development of a procoagulant and proinflammatory environment. The contribution to ARDS of increased extracellular histone levels, circulating mitochondrial DNA, the chromatin protein HMGB1, decreased neutrophil apoptosis, impaired macrophage efferocytosis, the cytokine storm, the toll-like receptor radical cycle, pyroptosis, necroinflammation, lymphopenia and a high Th17 to regulatory T lymphocyte ratio are detailed.
There is evidence that immune-inflammatory, stress of reactive oxygen and nitrogen species (IO&NS) processes play a role in the neurodegenerative processes observed in Parkinson's disease (PD). The aim of the present study was to investigate peripheral IO&NS biomarkers in PD. We included 56 healthy individuals and 56 PD patients divided in two groups: early PD stage and late PD stage. Plasma lipid hydroperoxides (LOOH), malondialdehyde (MDA), nitric oxide metabolites (NOx), sulfhydryl (SH) groups, catalase (CAT) activity, superoxide dismutase (SOD) activity, paraoxonase (PON)1 activity, total radical trapping antioxidant parameter (TRAP) and C-reactive protein (CRP) were measured. PD is characterized by increased LOOH, MDA and SOD activity and lowered CAT activity. A combination of five O&NS biomarkers highly significantly predicts PD with a sensitivity of 94.5% and a specificity of 86.8% (i.e., MDA, SOD activity, TRAP, SH-groups and CAT activity). The single best biomarker of PD is MDA, while LOOH and SOD activity are significantly associated with late PD stage, but not early PD stage. Antiparkinson drugs did not affect O&NS biomarkers, but levodopa+carbidopa significantly increased CRP. It is suggested that MDA may serve as a disease biomarker, while LOOH and SOD activity are associated with late PD stage characteristic. New treatments for PD should not only target dopamine but also lipid peroxidation.
To determine if oxidative stress and inflammation are linked with major depressive disorder, nicotine dependence and both disorders combined. This study comprised 150 smokers and 191 never smokers. The instruments were: a socio-demographic questionnaire, diagnoses of mood disorder and nicotine dependence according to DSM-IV, (SCID-IV), and the Alcohol, Smoking and Substance Involvement Screening Test. Laboratory assessments included: nitric oxide metabolites (NOx), lipid hydroperoxides, malondialdehyde (MDA), total reactive antioxidant potential (TRAP), advanced oxidation protein products (AOPP), fibrinogen concentrations, homocysteine, erythrocytes sedimentation rate (ESR) and high-sensitivity C-reactive protein (hs-CRP) were assayed from blood specimens. Statistically significant differences were found among depressed smokers who had more severe depressive symptoms, a higher risk of alcohol consumption, more suicide attempts, and more disability for work than non-depressed never smokers. Depressed smokers had significantly higher levels of NOx, fibrinogen, hs-CRP, AOPP, ESR and lower levels of TRAP compared to non-depressed never smokers. Depressed smokers had significant levels of oxidative stress and inflammatory biomarkers after adjusting for gender, age, years of education, disability for work, and laboratory measures. The levels of NOx, lipid hydroperoxides, AOPP, and fibrinogen were substantially higher, whereas levels of TRAP were lower in depressed smokers compared to non-depressed never smokers. (1) Depressed smokers exhibited altered concentrations of NOx, lipid hydroperoxides, AOPP, TRAP, and fibrinogen. (2) Depressed smokers were more unable to work, showed more severe depressive symptoms and attempted suicide more frequently.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.