Wolfram syndrome (WS) (MIM 222300) is a rare multisystem neurodegenerative disorder of autosomal recessive inheritance, also known as DIDMOAD (diabetes insipidus, insulin-deficient diabetes mellitus, optic atrophy and deafness). A Wolfram gene (WFS1) has been mapped to chromosome 4p16.1 which encodes an endoplasmic reticulum (ER) membrane-embedded protein. ER localization suggests that WFS1 protein has physiological functions in membrane trafficking, secretion, processing and/or regulation of ER calcium omeostasis. Disturbances or overloading of these functions induce ER stress responses, including apoptosis. Most WS patients carry mutations in this gene, but some studies provided evidence for genetic heterogeneity, and the genotype-phenotype relationships are not clear. Here we review the data regarding the mechanisms and the mutations of WFS1 gene that relate to WS.
Wolfram syndrome 1 (WS1) is a rare autosomal recessive neurodegenerative disease characterized by diabetes insipidus, diabetes mellitus, optic atrophy, deafness, and other abnormalities. WS1 usually results in death before the age of 50 years. The pathogenesis of WS1 is ascribed to mutations of human WFS1 gene on chromosome 4p encoding a transmembrane protein called wolframin which has physiological functions in membrane trafficking, secretion, processing, and/or regulation of ER calcium homeostasis. Different types of WFS1 mutations have been identified, and some of these have been associated with a dominant, severe type of WS.
Angiotensin I-converting enzyme (ACE) and angiotensin type 2 receptor (AT2R) gene polymorphisms have been associated with an increased incidence of congenital anomalies of the kidney and urinary tract (CAKUT). We investigated the genotype distribution of these polymorphisms in Italian children with CAKUT. We also evaluated the association between the ACE insertion/deletion and the AT2R gene polymorphisms with the progression of renal damage in subgroups of CAKUT patients. We recruited 102 Italian children with CAKUT; 27 with vesicoureteral reflux; 12 with hypoplastic kidneys; 20 with multicystic dysplastic kidneys; 13 with ureteropelvic junctions stenosis/ atresia; 18 with nonobstructed, nonrefluxing primary megaureters; and 12 with posterior urethral valves and compared them with 92 healthy control subjects. ACE and AT2R gene polymorphisms were analyzed by PCR. The identification of AT2R gene polymorphisms in intron 1 and in exon 3 was revealed by enzymatic digestion. ACE genotype distribution in children with CAKUT was no different from that of the control subjects, but the subgroup of patients with radiographic renal parenchymal abnormalities showed an increased occurrence of the D/D genotype. The frequency of the G allele of AT2R gene in children with CAKUT was increased in respect to that of the control subjects. By contrast, no significant difference in the frequency of the C and A alleles of the AT2R gene was found. Our findings indicate that the ACE gene can be a risk factor in the progression of renal parenchymal damage in CAKUT patients. Moreover, a major role of the AT2R gene in the development of CAKUT has been found, at least in Italian children. Congenital anomalies of the kidney and urinary tract (CAKUT) are now considered a major cause of renal failure in children (1). Ureteropelvic junction (UPJ) stenosis/atresia is the most common cause of a palpable abdominal mass in the newborn. Other forms of CAKUT include vesicoureteral reflux (VUR); hypoplastic kidney (HK); multicystic dysplastic kidney (MCDK); nonobstructed, nonrefluxing primary megaureter (MU); and bladder outlet obstruction [e.g. posterior urethral valves (PUV)] (2). A number of well-recognized but puzzling features are associated with CAKUT. Anomalies such as UPJ stenosis/atresia and MCDK are often unilateral or highly asymmetrical.Some of these anomalies are often concurrent (3-5). It is also noteworthy to mention that these abnormalities often take a familial pattern, showing incomplete and variable genetic penetrance. For this reason, it is believed that these assorted anatomic anomalies may share a common genetic cause (6 -8).
Communicated by Paolo FortinaWolfram syndrome (WS) is a recessively inherited mendelian form of diabetes and neurodegeneration also known by the acronym DIDMOAD from the major clinical features, including diabetes insipidus, diabetes mellitus, optic atrophy, and deafness. Affected individuals may also show renal tract abnormalities as well as multiple neurological and psychiatric symptoms. The causative gene for WS (WFS1) encoding wolframin maps to chromosome 4p16.1 and consists of eight exons, spanning 33.44 Kb of genomic DNA. In this study we report on the mutational analysis of the WFS1 coding region in 19 Italian WS patients and 25 relatives, using a DHPLC-based protocol. A total of 19 different mutations in WFS1 were found in 18 of 19 patients (95%). All these mutations, except one, are novel, preferentially located in WFS1 exon 8, and include deletions, insertions, duplications, and nonsense and missense changes. In particular, a 16 base-pair deletion in WFS1 codon 454 was detected in five different unrelated nuclear families, being the most prevalent alteration in this Italian group. Nine neutral changes and polymorphisms were also identified. Overall, this study represents the molecular characterization of the largest cohort of Italian WS patients and carriers studied so far, and increases the number of identified WFS1 allelic variants worldwide. Hum Mutat 21:622-629,
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.