BackgroundUsefulness of iron chelation therapy in myelodysplastic patients is still under debate but many authors suggest its possible role in improving survival of low-risk myelodysplastic patients. Several reports have described an unexpected effect of iron chelators, such as an improvement in hemoglobin levels, in patients affected by myelodysplastic syndromes. Furthermore, the novel chelator deferasirox induces a similar improvement more rapidly. Nuclear factor-κB is a key regulator of many cellular processes and its impaired activity has been described in different myeloid malignancies including myelodysplastic syndromes. Design and MethodsWe evaluated deferasirox activity on nuclear factor-κB in myelodysplastic syndromes as a possible mechanism involved in hemoglobin improvement during in vivo treatment. Forty peripheral blood samples collected from myelodysplastic syndrome patients were incubated with 50 μM deferasirox for 18h. ResultsNuclear factor-κB activity dramatically decreased in samples showing high basal activity as well as in cell lines, whereas no similar behavior was observed with other iron chelators despite a similar reduction in reactive oxygen species levels. Additionally, ferric hydroxyquinoline incubation did not decrease deferasirox activity in K562 cells suggesting the mechanism of action of the drug is independent from cell iron deprivation by chelation. Finally, incubation with both etoposide and deferasirox induced an increase in K562 apoptotic rate. ConclusionsNuclear factor-κB inhibition by deferasirox is not seen from other chelators and is iron and reactive oxygen species scavenging independent. This could explain the hemoglobin improvement after in vivo treatment, such that our hypothesis needs to be validated in further prospective studies.Key words: iron chelation therapy, nuclear factor-κB, myelodysplastic symdrome. Haematologica 2010;95(8):1308-1316. doi:10.3324/haematol.2009 Deferasirox is a powerful NF-κB inhibitor in myelodysplastic cells and in leukemia cell lines acting independently from cell iron deprivation by chelation and reactive oxygen species scavenging Citation: Messa E, Carturan S, Maffè C, Pautasso M, Bracco E, Roetto A, Messa F, Arruga F, Defilippi I, Rosso V, Zanone C, Rotolo A, Greco E, Pellegrino RM, Alberti D, Saglio G, and Cilloni D. Deferasirox is a powerful NF-κB inhibitor in myelodysplastic cells and in leukemia cell lines acting independently from cell iron deprivation by chelation and reactive oxygen species scavenging.
Despite the role of Bcr-Abl in the pathogenesis of Chronic Myeloid Leukemia (CML) is well established, the mechanisms leading to CML progression remain unknown. Using our model of Drosophila melanogaster (Dm) transgenic for human Bcr-Abl we identified Dab1 and Dab2, the homologs of Dm Disabled (Dab), as genes involved in CML progression. In Dm the Dab loss of function induced a worsening of the hBcr-Abl eye phenotype and an even stronger phenotype was obtained using Dab RNAi fly strains. By contrast, Dab gain of function rescued Bcr-Abl phenotype. Dab is an adaptor protein acting downstream of many receptor tyrosine kinases (RTK). One of the human homolog of Dab, Dab1 is a large common fragile site gene involved in neural migration, and the other homolog Dab2 encodes an adaptor protein implicated in RTK signalling, endocytosis, cell adhesion and differentiation. The downregulation of both genes is described in many cancers suggesting their possible role in oncogenesis but their involvement in haematological malignancies has never been described. The aim of the study was to investigate the role of Dab1/2 in CML progression. Dab1 and Dab2 mRNA was analyzed by Real Time PCR in 94 samples from 82 CML patients (34 PB and 60 BM) distributed as follows: 55 patients at diagnosis (19 enrolled in TOPS study), 9 chronic phase (CP), 7 accelerated phase (AP) and 11 blast crisis (BC). 21 healthy donors (10 PB and 11 BM) were analyzed as control. In 18 patients, genes expression was analyzed during remission as well. Protein expression was evaluated by Western Blot (WB) and Immunofluorescence (IF). In addition, K562 cells were transfected with Dab plasmids to evaluate the effects on cell proliferation. We found that in CML patients Dab1/2 expression was significantly decreased both in BM and PB (p<0.002 and p<0.0004) compared to healthy donors. In BC Dab1/2 levels were further decreased whereas during remission the expression was comparable to normal values. Data analysis of patients included in TOPS studies shows that Dab1 values are higher among those achieving MMR by 12 months (median value: 0,017) compared to those without MMR (median value: 0,001); WB and IF confirmed the absence of Dab1/2 proteins in course of active CML samples while it reappeared during remission. Moreover, Dab1 transfection of K562 significantly reduced proliferation (p=0,002). In conclusion, our results show a significant decrease of Dab1/2 expression in BC samples, when compared to CP CML and healthy donors. Among CP CML patients the responders to Tyrosine Kinase Inhibitors (TKI) therapy have been detected to express higher Dab levels than non responders, and these expression levels can predict MMR to Imatinib therapy. In conclusion, this study points to specific gene pathways that might offer new molecular markers for the monitoring of CML and new targets for CML therapy in order to prevent or overcome disease progression. Note: This abstract was not presented at the AACR 101st Annual Meeting 2010 because the presenter was unable to attend. Citation Format: {Authors}. {Abstract title} [abstract]. In: Proceedings of the 101st Annual Meeting of the American Association for Cancer Research; 2010 Apr 17-21; Washington, DC. Philadelphia (PA): AACR; Cancer Res 2010;70(8 Suppl):Abstract nr 251.
Proteinase 3 (PR3) gene codes for a serine protease with a broad spectrum of proteolytic activity. PR3 is involved in the control of proliferation of myeloid leukemia cells. When abnormally expressed it confers factor-independent growth to hematopoietic cells. The aim of this study was to investigate the role of PR3 gene in leukemic haematopoiesis. We analyzed the expression levels of PR3 by RQ-PCR in 113 BM samples collected from AML patients at diagnosis. The FAB distribution was as follows: M0=5, M1=12, M2=38, M3=12, M4=37, M5=5, M6=4. 19 patients were characterized by t(8;21) and 16 by inv(16). PR3 expression level was also analyzed in 57 BM and 42 PB samples from 88 MDS patients (44 RA, 32 RAEB and 12 secondary-AML) and in 15 BM and 40 PB samples from healthy volunteers. PR3 protein was analyzed by western blot (WB) and its localization determined by immunofluorescence assay using specific antibodies. The transcription factor C/EBPα, which negatively regulates PR3 expression was studied in parallel at the RNA and protein level by RQ-PCR and WB. The DNA binding activity of C/EBPα was investigated by EMSA assay. Gain and loss of function experiments were performed by transfecting COS and 293T cell lines with a plasmid containing the full length PR3 sequence and HL60, Me-1, and Kasumi cell lines with specific shRNA. We found that PR3 is significantly overexpressed in AML samples. The median value of 2−Δ ΔCt is 740, (range 15-5043). Interestingly, patients affected by Core Binding Factor leukemias showed significantly higher PR3 values compared to patients with normal karyotypes (NK) (p<0,0002 for t(8;21), p<0,001 for inv16) and lower C/EPBα levels. EMSA assay demonstrated the absence of C/EBPα DNA binding activity in CBF AML cells but not in NK AML. In addition, PR3 overexpression was detected in 60% of RA patients (mean value: 10, range 3–268), and in all the cases of RAEB (mean value 201: range:128–803) and secondary AML (mean value 589, range 207–7131). WB demonstrated the correlation between the mRNA and protein amount. Interestingly, immunofluorescence demonstrated the de-localization of the protein within the nucleous in CBF AML but it is completely cytoplasmatic in leukemic cells with normal karyotype and in MDS. Transfection experiments with PR3 plasmid demonstrated that PR3 overexpression results into a significantly increased proliferation and reduced apoptosis. By contrast transfection with shRNA triggers apoptosis and cell growth inhibition. In addition, WB demonstrated that nuclear PR3 is able to cleavage the p65subunit of NF-kB into a p56 isoform which lacks any transcriptional activity as confirmed by EMSA. In conclusion, PR3 gene expression and protein are significantly increased in AML and MDS, particularly in CBF leukemias in which the protein is not only increased but also completely delocalized within the nucleous. PR3 overepression My be due to a significant downmodulation of C/EBPα. Ectopic expression of PR3 induces increased proliferation and apoptosis arrest. The abnormal nuclear localization of PR3 in CBF leukemias results into the loss of function of NF-kB thus representing one mechanism of chemo sensitivity in this group of patients.
Core-binding factor (CBF) leukemias are characterized by a high degree of sensitivity to high-dose cytarabine (ARA-C) treatment and by a relatively favorable prognosis compared with most other forms of adult acute myeloid leukemia (AML). The molecular basis of the response to chemotherapy is still being analyzed. The proteinase 3 (PR3) gene codes for a serine protease with a broad spectrum of proteolytic activity. PR3 is involved in the control of proliferation of myeloid leukemia cells, and when it is abnormally expressed, it confers factor-independent growth to hematopoietic cells. In this study, we analyzed the expression levels of PR3 in 113 AML patients. PR3 is highly expressed in AML, mainly in CBF leukemias in which PR3 is not only expressed, but also abnormally localized within the nuclear compartment. Nuclear PR3 results in cleavage of nuclear factor (NF)-kappaB p65 into an inactive p56 subunit lacking any transcriptional activity. The nuclear localization of PR3 is responsible for increased proliferation, apoptosis arrest and increased sensitivity to high-dose ARA-C. This study provides a new molecular mechanism that is responsible for NF-kappaB inactivation and increased sensitivity to chemotherapy in CBF leukemias.Leukemia advance online publication, 14 January 2010; doi:10.1038/leu.2009.207.
3470 Poster Board III-358 The role of Bcr-Abl in the pathogenesis of Chronic Myeloid Leukemia (CML) is well established, however, the mechanisms leading to CML progression remain poorly understood. By using our model of transgenic Drosophila Melanogaster (Dm) for human Bcr-Abl driven CML we have identified Rab5 as a gene involved in the regulation of CML progression. The Rab5 is a member of gene family small GTPases which are involved in the regulation of vesicular transport. Lately several important reports have linked some members of the Rab family to invesivness and migration of cancer cells. Rab5 is associate with alpha-integrin subunits and modulates their endosomal traffic and subcellular localization. We have observed that a loss of function of Rab5 gene have induced a worsening of the CML phenotype generated by hBcr-Abl expression. In contrast, Rab gain of function rescued Bcr-Abl phenotype. The aim of the study was to evaluate the expression of Rab5 in CML cells to better understand if a potential correlation with progression, which has been observed in the model, could be confirmed in patients. Methods Rab5 gene expression was measured by Real Time PCR in 90 samples from 80 CML patients (32 PB and 58 BM). Among those, 53 are collected at diagnosis (19 of 53 patients have been enrolled in TOPS study). In addition, 9 samples from in CP patients have been collected at the time of imatinib resistance, 7 in accelerated phase and 11 in BC. In 14 patients, genes expression was analyzed during remission as, well. In parallel, 21 healthy donors (10 PB and 11 BM) have been evaluated. Rab5 protein expression was investigated by Western Blot and Immunofluorescence. We have also utilized K562 transfected with Rab5 plasmid, which we have generated to gain insight about the effects of Rab5 on cell proliferation and apoptosis. Results Rab5 transfection and overexpression in K562 significantly reduced proliferation and affected apoptosis. We found that in CML patients Rab5 expression levels were significantly decreased in either BM or PB (p<0.001 and p<0.0001) as compared to healthy subjects. Furthermore, in blast crisis samples we have found Rab5 transcripts levels to be further decreased. In contrast, at the time of remission, the transcript levels were comparable to normal values. Our preliminary analysis of samples from TOPS trial have shown a trend that Rab5 levels are lower among those patients achieving MMR by 12 months, when compared to the group of patients non achieving MMR on 400 mg, but that difference was not statistically significant (p=0.2). Among those randomized to receive imatinib 800 mg the difference was statistically significant with a median value among those achieving MMR of 1.27 vs 2.14 in the group without MMR (p=0.04). The protein levels have been analyzed by Western Blot and immunofluorescence and allow us to show detectable levels of Rab5 in samples collected at remission, but undetectable levels in course of active CML disease. Although preliminary, our results show a significant decrease of Rab5 expression in blast crisis samples, when compared to CP CML and healthy volunteers, which suggest a role of Rab5 in slowing down or suppressing a progression. Surprisingly, among CP CML patients the responders to TKI therapy have been detected to express a lower level of Rab5 than non responders. We are conducting further studies to better explain these data, which we find intriguing and suggesting that molecular factors involved in the regulation of CML progression could be uncoupled from the mechanisms regulating response to TKI therapy. Supported by Novartis Oncology, Clinical Development, TOPS Clinical Correlative Studies Network Disclosures No relevant conflicts of interest to declare.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.