The hepatitis C virus (HCV) nonstructural 3 protein (NS3) contains at least two domains associated with multiple enzymatic activities; a serine protease activity resides in the N-terminal one-third of the protein, whereas RNA helicase activity and RNA-stimulated nucleoside triphosphatase activity are associated with the C-terminal portion. To study the possible mutual influence of these enzymatic activities, a full-length NS3 polypeptide of 67 kDa was expressed as a nonfusion protein in Escherichia coli, purified to homogeneity, and shown to retain all three enzymatic activities. The protease activity of the full-length NS3 was strongly dependent on the activation by a synthetic peptide spanning the central hydrophobic core of the NS4A cofactor. Once complexed with the NS4A-derived peptide, the full-length NS3 protein and the isolated N-terminal protease domain cleaved synthetic peptide substrates with comparable efficiency. We show that, as in the case of the isolated protease domain, the protease activity of full-length NS3 undergoes inhibition by the N-terminal cleavage products of substrate peptides corresponding to the NS4A-NS4B and NS5A-NS5B. We have also characterized and quantified the NS3 ATPase, RNA helicase, and RNA-binding activities under optimized reaction conditions. Compared with the isolated N-terminal and C-terminal domains, recombinant full-length NS3 did not show significant differences in the three enzymatic activities analyzed in independent in vitro assays. We have further explored the possible interdependence of the NS3 N-terminal and C-terminal domains by analyzing the effect of polynucleotides on the modulation of all NS3 enzymatic functions. Our results demonstrated that the observed inhibition of the NS3 proteolytic activity by single-stranded RNA is mediated by direct interaction with the protease domain rather than with the helicase RNA-binding domain.
The hepatitis C virus nonstructural 3 protein (NS3) possesses a serine protease activity in the N-terminal one-third, whereas RNA-stimulated NTPase and helicase activities reside in the C-terminal portion. The serine protease activity is required for proteolytic processing at the NS3-NS4A, NS4A-NS4B, NS4B-NS5A, and NS5A-NS5B polyprotein cleavage sites. NS3 forms a complex with NS4A, a 54-residue polypeptide that was shown to act as an essential cofactor of the NS3 protease. We have expressed in Escherichia coli the NS3-NS4A precursor; cleavage at the junction between NS3 and NS4A occurs during expression in the bacteria cells, resulting in the formation of a soluble noncovalent complex with a sub-nanomolar dissociation constant. We have assessed the minimal ionic strength and detergent and glycerol concentrations required for maximal proteolytic activity and stability of the purified NS3-NS4A complex. Using a peptide substrate derived from the NS5A-NS5B junction, the catalytic efficiency (kcat/Km) of NS3-NS4A-associated protease under optimized conditions was 55 000 s-1 M-1, very similar to that measured with a recombinant complex purified from eukaryotic cells. Dissociation of the NS3-NS4A complex was found to be fully reversible. No helicase activity was exhibited by the purified NS3-NS4A complex, but NS3 was fully active as a helicase upon dissociation of NS4A. On the other hand, both basal and poly(U)-induced NTPase activity and ssRNA binding activity associated with the NS3-NS4A complex were very similar to those exhibited by NS3 alone. Therefore, NS4A appears to uncouple the ATPase/ssRNA binding and RNA unwinding activities associated with NS3.
The interaction of the hepatitis C virus (HCV) NS3 protease domain with its NS4A cofactor peptide (Pep4AK) was investigated at equilibrium and at pre-steady state under different physicochemical conditions. Equilibrium dissociation constants of the NS3-Pep4AK complex varied by several orders of magnitude depending on buffer additives. Glycerol, NaCl, detergents, and peptide substrates were found to stabilize this interaction. The extent of glycerol-induced stabilization varied in an HCV strain-dependent way with at least one determinant mapping to an NS3-NS4A interaction site. Conformational transitions affecting at least the first 18 amino acids of NS3 were the main energy barriers for both the association and the dissociation reactions of the complex. However, deletion of this N-terminal portion of the protease molecule only slightly influenced equilibrium dissociation constants determined under different physicochemical conditions. Limited proteolysis experiments coupled with mass spectrometric identification of cleavage fragments suggested a high degree of conformational flexibility affecting at least the first 21 residues of NS3. The accessibility of this region of the protease to limited chymotryptic digestion did not significantly change in any condition tested, whereas a significant reduction of chymotryptic cleavages within the NS3 core was detected under conditions of high NS3-Pep4AK complex affinity. We conclude the following: (1) The N-terminus of the NS3 protease that, according to the X-ray crystal structure, makes extensive contacts with the cofactor peptide is highly flexible in solution and contributes only marginally to the thermodynamic stability of the complex. (2) Affinity enhancement is accomplished by several factors through a general stabilization of the fold of the NS3 molecule.
Abdurins are a novel antibody-like scaffold derived from the engineering of a single isolated CH2 domain of human IgG. Previous studies established the prolonged serum half-life of Abdurins, the result of a retained FcRn binding motif. Here we present data on the construction of large, diverse, phage-display and cell-free DNA display libraries and the isolation of high affinity binders to the cancer target, membrane-bound ephrin receptor tyrosine kinase class A2 (EphA2). Antigen binding regions were created by designing combinatorial libraries into the structural loops and Abdurins were selected using phage display methods. Initial binders were reformatted into new maturation libraries and low nanomolar binders were isolated using cell-free DNA display, CIS display. Further characterization confirmed binding of the Abdurins to both human and murine EphA2 proteins and exclusively to cell lines that expressed EphA2, followed by rapid internalization. Two different EphA2 binders were labeled with 64Cu, using a bifunctional MeCOSar chelator, and administered to mice bearing tumors from transplanted human prostate cancer cells, followed by PET/CT imaging. The anti-EphA2 Abdurins localized in the tumors as early as 4 hours after injection and continued to accumulate up to 48 hours when the imaging was completed. These data demonstrate the ability to isolate high affinity binders from the engineered Abdurin scaffold, which retain a long serum half-life, and specifically target tumors in a xenograft model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.