Autism spectrum disorder (ASD) is a neurodevelopmental disorder defined by deficits in social communication and stereotypical behaviours. ASD’s aetiology remains mostly unclear, because of a complex interaction between genetic and environmental factors. Recently, a strong consensus has developed around ASD’s immune‐mediated pathophysiology, which is the subject of this review. For many years, neuroimmunological studies tried to understand ASD as a prototypical antibody‐ or cell‐mediated disease. Other findings indicated the importance of autoimmune mechanisms such as familial and individual autoimmunity, adaptive immune abnormalities and the influence of infections during gestation. However, recent studies have challenged the idea that autism may be a classical autoimmune disease. Modern neurodevelopmental immunology shows the double‐edged nature of many immune effectors, which can be either beneficial or detrimental depending on tissue homeostasis, stressors, neurodevelopmental stage, inherited and de novo gene mutations and other variables. Nowadays, mother–child interactions in the prenatal environment appear to be crucial for the occurrence of ASD. Studies of animal maternal–foetal immune interaction are being fruitfully carried out using different combinations of type and timing of infection, of maternal immune response and foetal vulnerability and of resilience factors to hostile events. The derailed neuroimmune crosstalk through the placenta initiates and maintains a chronic foetal neuroglial activation, eventually causing the alteration of neurogenesis, migration, synapse formation and pruning. The importance of pregnancy can also allow early immune interventions, which can significantly reduce the increasing risk of ASD and its heavy social burden.
Background Childhood neurodevelopmental disorders (NDDs), including specific learning disorders (SLD), attention deficit/hyperactivity disorder (ADHD) and autism spectrum disorder (ASD), are pathogenically linked to familial autoimmunity and maternal immune-mediated diseases during pregnancy. Objective We studied maternal MS as a potential risk factor for NDDs occurrence in offspring. Methods MS and control mothers were subjected to questionnaires to ascertain NDD diagnosis in their progeny and the occurrence of both autoimmune and neurodevelopment disorders in their families. Suspected NDD cases were evaluated to confirm or rule out the diagnosis. Results Of the 322 MS women, 206 (64%) have 361 children; of these, 27 (7.5%) were diagnosed with NDD (11% ADHD; 22% ASD; 67% SLD). NDD-risk in offspring was associated to family history of autoimmunity and to NDDs both in MS and non-MS mother families ( r = 0.75; p = 0.005) whereas it was not associated to maternal MS. Conclusions For the first time, we demonstrate that maternal MS does not predispose children to higher risk for NDD. On a mechanistic view, we suggest that the intrinsic organ-specific nature of MS does not impair the mother–child cross-talk in decidua nor does it influence fetal neurodevelopment.
ASD is a neurodevelopmental disorder of unknown aetiology but with a known contribution of pathogenic immune-mediated mechanisms. HERVs are associated with several neuropsychiatric diseases, including ASD. We studied anti-HERV-W, -K and -H-env immune profiles in ASD children to analyse differences between their respective mothers and child/mother control pairs and possible correlations to ASD severity and loss of adaptive abilities. Of the 84 studied individuals, 42 children (23 ASD and 19 neurotypical) and their paired mothers underwent clinical and neuropsychological evaluations. ASD severity was analysed with standardised tests. Adaptive functioning was studied with ABAS-II and GAC index. Plasma anti-env responses of HERV-K, -H and -W were tested with indirect ELISA. ASD and neurotypical children did not differ in age, gender, comorbidities and anti-HERV responses. In children with ASD, anti-HERV levels were not correlated to ASD severity, while a significant inverse correlation was found between anti-HERV-W-248-262 levels and adaptive/social abilities. Upregulation of anti-HERV-W response correlates to dysfunctional social and adaptive competences in ASD but not in controls, suggesting anti-HERV response plays a role in the appearance of peculiar ASD symptoms.
Multiple Sclerosis (MS) is a chronic pathological condition representing one of the main causes of neurological disability in the female young population. MS, as an immune disorder, could impact fetus development, and, considering the need for and the possibility of pharmacological treatment during pregnancy, the possible influence of medication on developmental trajectories represents a topic of great interest. We provide an overview of the available literature on the influence of maternal Multiple Sclerosis on offspring cognitive and behavioral development. A study was conducted on Pubmed, Medline and Google Scholar, considering empirical studies and reviews exclusively in the English language. Maternal MS appears not to be associated with emotional and behavioral problems, as evaluated through retrospective studies. However, a specific cognitive and behavioral phenotype, through the administration of standardized instruments, has not been delineated yet. Available studies on the topic are characterized by poor methodology and do not lead to conclusions. This overview highlights implications for further longitudinal studies which should delineate offspring developmental trajectories, taking into consideration maternal confounding factors and the exposure to pharmacological treatment in pregnancy.
Background: Glucose-transporter-1 deficiency syndrome (GLUT1-DS), due to SLC2A1 gene mutation, is characterized by early-onset seizures, which are often drug-resistant, developmental delay, and hypotonia. Hemiplegic migraine (HM) is a rare form of migraine, defined by headache associated with transient hemiplegia, and can be caused by mutations in either CACNA1A, ATP1A2, or SCN1A. Paroxysmal movements, other transient neurological disorders, or hemiplegic events can occur in GLUT1-DS patients with a mild phenotype.Case: We report on a girl with GLUT1-DS, due to SLC2A1 mutation, with a mild phenotype. In early childhood, she developed epilepsy and mild cognitive impairment, balance disorders, and clumsiness. At the age of 9, the patient reported a first hemiplegic episode, which regressed spontaneously. Over the next 3 years, two similar episodes occurred, accompanied by headache. Therefore, in the hypothesis of HM, genetic testing was performed and CACNA1A mutation was identified. The treatment with Lamotrigine avoided the recurrence of HM episodes.Discussion: To our knowledge, among the several cases of GLUT1-DS with HM symptoms described in the literature, genetic testing was only performed in two of them, which eventually proved to be negative. In all other cases, no other genes except for SLC2A1 were examined. Consequently, our patient would be the first description of GLUT1-DS with HM due to CACNA1A mutation. We would emphasize the importance of performing specific genetic testing in patients with GLUT1-DS with symptoms evocative of HM, which may allow clinicians to use specific pharmacotherapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.