Nucleophilic aromatic photosubstitutions of 1,2-dialkoxy-4-nitrobenzenes by oxygen nucleophiles such as water or alcohols in basic media and in air equilibrated solutions, lead to low yields of substitution, following the "polar" S N Ar * mechanism. Photoreduction of the nitro group is the exclusive process in an inert atmosphere. By using Topologically Controlled Coulombic Interactions (TCCI), the photosubstitution process becomes predominant, allowing the SET mechanism for S N Ar * reactions to occur. This is due, on one hand, to the reduced tendency of the radical anion to be oxidized, and on the other hand, to the removal of electronic density from the nitro group in the radial anion which lowers the rate of proton transfer from the nucleophile radical cation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.