Whether human IL-10-producing regulatory T cells ("Tr1") represent a distinct differentiation lineage or an unstable activation stage remains a key unsolved issue. Here, we report that Eomesodermin (Eomes) acted as a lineage-defining transcription factor in human IFN-γ/IL-10 coproducing Tr1-like cells. In vivo occurring Tr1-like cells expressed Eomes, and were clearly distinct from all other CD4 + T-cell subsets, including conventional cytotoxic CD4 + T cells. They expressed Granzyme (Gzm) K, but had lost CD40L and IL-7R expression. Eomes antagonized the Th17 fate, and directly controlled IFN-γ and GzmK expression. However, Eomes binding to the IL-10 promoter was not detectable in human CD4 + T cells, presumably because critical Tbox binding sites of the mouse were not conserved. A precommitment to a Tr1-like fate, i.e. concominant induction of Eomes, GzmK, and IFN-γ, was promoted by IL-4 and IL-12-secreting myeloid dendritic cells. Consistently, Th1 effector memory cells contained precommitted Eomes + GzmK + T cells. Stimulation with T-cell receptor (TCR) agonists and IL-27 promoted the generation of Tr1-like effector cells by inducing switching from CD40L to IL-10. Importantly, CD4 + Eomes + T-cell subsets were present in lymphoid and nonlymphoid tissues, and their frequencies varied systemically in patients with inflammatory bowel disease and graft-versus-host disease. We propose that Eomes + Tr1-like cells are effector cells of a unique GzmK-expressing CD4 + T-cell subset.
Meiosis is a complex type of cell division that involves homologous chromosome pairing, synapsis, recombination, and segregation. When any of these processes is altered, cellular checkpoints arrest meiosis progression and induce cell elimination. Meiotic impairment is particularly frequent in organisms bearing chromosomal translocations. When chromosomal translocations appear in heterozygosis, the chromosomes involved may not correctly complete synapsis, recombination, and/or segregation, thus promoting the activation of checkpoints that lead to the death of the meiocytes. In mammals and other organisms, the unsynapsed chromosomal regions are subject to a process called meiotic silencing of unsynapsed chromatin (MSUC). Different degrees of asynapsis could contribute to disturb the normal loading of MSUC proteins, interfering with autosome and sex chromosome gene expression and triggering a massive pachytene cell death. We report that in mice that are heterozygous for eight multiple simple Robertsonian translocations, most pachytene spermatocytes bear trivalents with unsynapsed regions that incorporate, in a stage-dependent manner, proteins involved in MSUC (e.g., γH2AX, ATR, ubiquitinated-H2A, SUMO-1, and XMR). These spermatocytes have a correct MSUC response and are not eliminated during pachytene and most of them proceed into diplotene. However, we found a high incidence of apoptotic spermatocytes at the metaphase stage. These results suggest that in Robertsonian heterozygous mice synapsis defects on most pachytene cells do not trigger a prophase-I checkpoint. Instead, meiotic impairment seems to mainly rely on the action of a checkpoint acting at the metaphase stage. We propose that a low stringency of the pachytene checkpoint could help to increase the chances that spermatocytes with synaptic defects will complete meiotic divisions and differentiate into viable gametes. This scenario, despite a reduction of fertility, allows the spreading of Robertsonian translocations, explaining the multitude of natural Robertsonian populations described in the mouse.
The third edition of Flow Cytometry Guidelines provides the key aspects to consider when performing flow cytometry experiments and includes comprehensive sections describing phenotypes and functional assays of all major human and murine immune cell subsets. Notably, the Guidelines contain helpful tables highlighting phenotypes and key differences between human and murine cells. Another useful feature of this edition is the flow cytometry analysis of clinical samples with examples of flow cytometry applications in the context of autoimmune diseases, cancers as well as acute and chronic infectious diseases. Furthermore, there are sections detailing tips, tricks and pitfalls to avoid. All sections are written and peer-reviewed by leading flow cytometry experts and immunologists, making this edition an essential and state-of-the-art handbook for basic and clinical researchers.
We provide the first ex vivo characterization of human intestinal T1 cells. Selective downregulation of IL-10 by IFN-γ T1 cells in response to proinflammatory cytokines is likely to drive excessive intestinal inflammation in patients with IBDs.
Interleukin 10 (IL-10) is an antiinflammatory cytokine, but also promotes B cell responses and plays a pathogenic role in systemic lupus erythematosus (SLE). CD4+CCR6+IL-7R+T cells from human tonsils produced IL-10 following stimulation by naïve B cells, which promoted B cell immunoglobulin G (IgG) production. These tonsillar CCR6+B helper T cells were phenotypically distinct from follicular helper T (TFH) cells and lacked BCL6 expression. In peripheral blood, a CCR6+T cell population with similar characteristics was identified, which lacked Th17- and TFH-associated gene signatures and differentiation-associated surface markers. CD4+CCR6+T cells expressing IL-10, but not IL-17, were also detectable in the spleens of cytokine reporter mice. They provided help for IgG production in vivo, and expanded systemically in pristane-induced lupus-like disease. In SLE patients, CD4+CCR6+IL-7R+T cells were associated with the presence of pathogenic anti-dsDNA (double-stranded DNA) antibodies, and provided spontaneous help for autoantibody production ex vivo. Strikingly, IL-10–producing CCR6+T cells were highly abundant in lymph nodes of SLE patients, and colocalized with B cells at the margins of follicles. In conclusion, we identified a previously uncharacterized population of extrafollicular B helper T cells, which produced IL-10 and could play a prominent pathogenic role in SLE.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.