In recent years, exoskeletons have been widely accepted as rehabilitative and walking assistive devices for either healthy persons or patients with mobility impairment. Depending on mobility of the wearers, the control strategies for exoskeletons may differ significantly. This paper aims at developing an admittance control framework for exoskeletons to assist healthy persons in safer, faster, or more energyefficient walking. A crucial step to accomplish assistive walking for healthy persons is to detect their intention. Direct sensing of the wearer's biological signals, such as electromyography (EMG) and electroencephalography (EEG), requires additional sensors, which increases the cost and makes it inconvenient for the wearer to put on and take off the exoskeleton. Instead, we propose to detect the wearer's intention by estimating the total torques applied from the wearer to the human-exoskeleton system based on the motor current and joint angles. Then the velocity commands to the joint motors are generated according to the estimated torque and a predefined mechanical admittance function of each joint. Consequently, the exoskeleton complies with the wearer's intention. Rigorous theoretical analysis is performed on robust stability of the closed-loop system. Then experiments are carried out to verify the accuracy and robustness of the proposed torque estimation algorithm. In addition, experimental data show that the wearer's gait can be shaped in a desired way by choosing an appropriate admittance function in the proposed admittance control loop.
Abstract-This paper presents a low-cost heterogeneous integration technology combining the previously developed bumpless radio-frequency (RF) system-on-a-package scheme with a special surface cleaning process to assemble a complementary metal-oxide-semiconductor chip with an organic substrate (SU-8/ polydimethylsiloxane) by low-temperature Au-Au thermocompressive bonds (< 200• C) for flexible wireless microsystem fabrication. The RF performance of −15 dB return loss and −0.25 dB insertion loss at 40 GHz and above 6 MPa bonding strength of a microstrip-to-coplanar-waveguide interconnect transition between the chip and the substrate make the technology practical for flexible wireless microsystem integration.
Lower-limb exoskeletons as walking assistive devices have been intensively investigated in recent decades. In these studies, intention detection and performance evaluation are important topics. In our previous studies, we proposed a disturbance observer (DOB)-based torque estimation algorithm and an admittance control law to shape the admittance of the human-exoskeleton system (HES) and comply with the user’s walking intention. These algorithms have been experimentally verified under the condition of no ground reaction force (GRF) in our previous studies. In this paper, we devised and integrated with the exoskeleton control system a sensing and communication module on each foot to measure and compensate for GRF. Rigorous theoretical analysis was performed and the sufficient conditions for the robust stability of the closed-loop system were derived. Then, we conducted level ground assistive walking repeatedly with different test subjects and exhaustive combinations of admittance parameters. In addition, we proposed two tractable and physically insightful performance indices called normalized energy consumption index (NECI) and walking distance in a fixed period of time to quantitatively evaluate the performance for different admittance parameters. We also compared the energy consumption for users walking with and without the exoskeleton. The results show that the proposed admittance control law reduces the energy consumption of the user during level ground walking.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.