African sleeping sickness or human African trypanosomiasis (HAT), caused by Trypanosoma brucei spp., is responsible for ~30,000 deaths each year. Available treatments for this neglected disease are poor, with unacceptable efficacy and safety profiles, particularly in the late stage of the disease, when the parasite has infected the central nervous system. Here, we report the validation of a molecular target and discovery of associated lead compounds with potential to address this unmet need. Inhibition of this target, T. brucei N-myristoyltransferase (TbNMT), leads to rapid killing of trypanosomes both in vitro and in vivo and cures trypanosomiasis in mice. These high affinity inhibitors bind into the peptide substrate pocket of the enzyme and inhibit protein N-myristoylation in trypanosomes. The compounds identified have very promising pharmaceutical properties and represent an exciting opportunity to develop oral drugs to treat this devastating disease. Our studies validate TbNMT as a promising therapeutic target for HAT.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.