The first cell fate commitment during mammalian development is the specification of the inner cell mass and trophectoderm. This irreversible cell fate commitment should be epigenetically regulated, but the precise mechanism is largely unknown in humans. Here, we show that naïve human embryonic stem (hES) cells can transdifferentiate into trophoblast stem (hTS) cells, but primed hES cells cannot. Our transcriptome and methylome analyses reveal that a primate-specific miRNA cluster on chromosome 19 (C19MC) is active in naïve hES cells but epigenetically silenced in primed ones. Moreover, genome and epigenome editing using CRISPR/Cas systems demonstrate that C19MC is essential for hTS cell maintenance and C19MC-reactivated primed hES cells can give rise to hTS cells. Thus, we reveal that C19MC activation confers differentiation potential into trophoblast lineages on hES cells. Our findings are fundamental to understanding the epigenetic regulation of human early development and pluripotency.
Epigenetic mechanisms such as DNA methylation or histone modifications are essential for the regulation of gene expression and development of tissues. Alteration of epigenetic modifications can be used as an epigenetic biomarker for diagnosis and as promising targets for epigenetic therapy. A recent study explored cancer-cell specific epigenetic biomarkers by examining different types of epigenetic modifications simultaneously. However, it was based on microarrays and reported biomarkers that were also present in normal cells at a low frequency. Here, we first analyzed multi-omics data (including ChIP-Seq data of six types of histone modifications: H3K27ac, H3K4me1, H3K9me3, H3K36me3, H3K27me3, and H3K4me3) obtained from 26 lung adenocarcinoma cell lines and a normal cell line. We identified six genes with both H3K27ac and H3K4me3 histone modifications in their promoter regions, which were not present in the normal cell line, but present in ≥85% (22 out of 26) and ≤96% (25 out of 26) of the lung adenocarcinoma cell lines. Of these genes, NUP210 (encoding a main component of the nuclear pore complex) was the only gene in which the two modifications were not detected in another normal cell line. RNA-Seq analysis revealed that NUP210 was aberrantly overexpressed among the 26 lung adenocarcinoma cell lines, although the frequency of NUP210 overexpression was lower (19.3%) in 57 lung adenocarcinoma tissue samples studied and stored in another database. This study provides a basis to discover epigenetic biomarkers highly specific to a certain cancer, based on multi-omics data at the cell population level.
Human breast cancers comprise a complex and highly heterogeneous population of tumor cells. Intratumor heterogeneity is an underlying cause of resistance to effective therapies and disease recurrence. To explore prognostic factors based on intratumor heterogeneity, we analyzed genomic mutations in breast cancer patients registered in The Cancer Genome Atlas. We calculated the variant allele frequency (VAF) at each mutation site and evaluated the associations of VAFs with the prognosis of breast cancer. VAFs of HMCN1 correlated with the prognosis and lymph node status. Although the detailed function of HMCN1 remains unknown, it is located in extracellular matrix and the mutation in the gene might be associated with cancer cell invasion and metastasis. This finding suggests that HMCN1 is a potential metastatic factor and can be a candidate gene for targeted breast cancer therapy.
Cancer-related mutations have been mainly identified in protein-coding regions. Recent studies have demonstrated that mutations in non-coding regions of the genome could also be a risk factor for cancer. However, the non-coding regions comprise 98% of the total length of the human genome and contain a huge number of mutations, making it difficult to interpret their impacts on pathogenesis of cancer. To comprehensively identify cancer-related non-coding mutations, we focused on recurrent mutations in non-coding regions using somatic mutation data from COSMIC and whole-genome sequencing data from The Cancer Genome Atlas (TCGA). We identified 21 574 recurrent mutations in non-coding regions that were shared by at least two different samples from both COSMIC and TCGA databases. Among them, 580 candidate cancer-related non-coding recurrent mutations were identified based on epigenomic and chromatin structure datasets. One of such mutation was located in RREB1 binding site that is thought to interact with TEAD1 promoter. Our results suggest that mutations may disrupt the binding of RREB1 to the candidate enhancer region and increase TEAD1 expression levels. Our findings demonstrate that non-coding recurrent mutations and coding mutations may contribute to the pathogenesis of cancer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.