Dyslipidemia is a major risk factor for development of several obesity-related diseases. The peroxisome proliferator-activated receptor α (PPARα) is a ligand-activated transcription factor that regulates energy metabolism. Previously, we reported that 9-oxo-10,12-octadecadienoic acid (9-oxo-ODA) is presented in fresh tomato fruits and acts as a PPARα agonist. In addition to 9-oxo-ODA, we developed that 13-oxo-9,11-octadecadienoic acid (13-oxo-ODA), which is an isomer of 9-oxo-ODA, is present only in tomato juice. In this study, we explored the possibility that 13-oxo-ODA acts as a PPARα agonist in vitro and whether its effect ameliorates dyslipidemia and hepatic steatosis in vivo. In vitro luciferase assay experiments revealed that 13-oxo-ODA significantly induced PPARα activation; moreover, the luciferase activity of 13-oxo-ODA was stronger than that of 9-oxo-ODA and conjugated linoleic acid (CLA), which is a precursor of 13-oxo-ODA and is well-known as a potent PPARα activator. In addition to in vitro experiment, treatment with 13-oxo-ODA decreased the levels of plasma and hepatic triglycerides in obese KK-Ay mice fed a high-fat diet. In conclusion, our findings indicate that 13-oxo-ODA act as a potent PPARα agonist, suggesting a possibility to improve obesity-induced dyslipidemia and hepatic steatosis.
Recently, fibrosis is observed in obese adipose tissue; however, the pathogenesis remains to be clarified. Obese adipose tissue is characterized by chronic inflammation with massive accumulation of immune cells including mast cells. The objective of the present study was to clarify the relationship between fibrosis and mast cells in obese adipose tissue, as well as to determine the origin of infiltrating mast cells. We observed the enhancement of mast cell accumulation and fibrosis in adipose tissue of severely obese diabetic db/db mice. Furthermore, adipose tissue-conditioned medium (ATCM) from severely obese diabetic db/db mice significantly enhanced collagen 5 mRNA expression in NIH-3T3 fibroblasts, and this enhancement was suppressed by the addition of an anti-mast cell protease 6 (MCP-6) antibody. An in vitro study showed that only collagen V among various types of collagen inhibited preadipocyte differentiation. Moreover, we found that ATCM from the nonobese but not obese stages of db/db mice significantly enhanced the migration of bone marrow-derived mast cells (BMMCs). These findings suggest that immature mast cells that infiltrate into adipose tissue at the nonobese stage gradually mature with the progression of obesity and diabetes and that MCP-6 secreted from mature mast cells induces collagen V expression in obese adipose tissue, which may contribute to the process of adipose tissue fibrosis. Induction of collagen V by MCP-6 might accelerate insulin resistance via the suppression of preadipocyte differentiation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.