Expression of matrix metalloproteinase-1 (MMP1), an interstitial collagenase regulating the extracellular matrix, plays a major role in carcinogenesis of gastric cancer, a leading cause of death worldwide. In literature, the single-nucleotide polymorphism (SNP) promoter -1607 1G/2G (rs1799750) at the MMP1 gene promoter has been reported to alter its own transcription level. While the importance’s of the genotype of MMP1 promoter -1607 has not yet been studied in gastric cancer in Taiwan, our aim was to investigate MMP1 promoter -1607 genotypes and gastric cancer (GC) susceptibility in central Taiwan population. In the current hospital-based case-control study, the contribution of MMP1 promoter -1607 genotypes to GC risk was investigated among 121 GC patients and 363 gender- and age-matched healthy controls recruited and genotyped by the polymerase chain reaction-based restriction fragment length polymorphism (PCR-RFLP) methodology. We found that the genotypic and allelic frequencies were not differentially distributed between GC patient and control groups. The variant 1G containing genotypes have interactions with cigarrete smoking behaviors and Helicobacter pylori infection status, but not alcoholism on GC susceptibility determination. Our findings suggest that the variant 1G allele on MMP1 promoter -1607 may contribute to GC carcinogenesis and may be useful for GC early detection and prevention when combined with cigarrete smoking behaviors and Helicobacter pylori infection status.
BackgroundAcute lymphoblastic leukemia (ALL) is the most prevalent type of pediatric cancer, the causes of which are likely to involve an interaction between genetic and environmental factors. To evaluate the effects of the genotypic polymorphisms in methylenetetrahydrofolate reductase (MTHFR) on childhood ALL risk in Taiwan, two well-known polymorphic genotypes of MTHFR, C677T (rs1801133) and A1298C (rs1801131), were analyzed to examine the extent of their associations with childhood ALL susceptibility and to discuss the MTHFR genotypic contribution to childhood ALL risk among different populations.Methodology/Principal FindingsIn total, 266 patients with childhood ALL and an equal number of non-cancer controls recruited were genotyped utilizing PCR-RFLP methodology. The MTHFR C677T genotype, but not the A1298C, was differently distributed between childhood ALL and control groups. The CT and TT of MTHFR C677T genotypes were significantly more frequently found in controls than in childhood ALL patients (odds ratios=0.60 and 0.48, 95% confidence intervals=0.42–0.87 and 0.24–0.97, respectively). As for gender, the boys carrying the MTHFR C677T CT or TT genotype conferred a lower odds ratio of 0.51 (95% confidence interval=0.32–0.81, P=0.0113) for childhood ALL. As for age, those equal to or greater than 3.5 years of age at onset of disease carrying the MTHFR C677T CT or TT genotype were of lower risk (odds ratio= 0.43 and 95% confidence interval=0.26–0.71, P=0.0016).ConclusionsOur results indicated that the MTHFR C677T T allele was a protective biomarker for childhood ALL in Taiwan, and the association was more significant in male patients and in patients 3.5 years of age or older at onset of disease.
Accumulation of senescent cells in various tissues has been reported to have a pathological role in age-associated diseases. Elimination of senescent cells (senolysis) was recently reported to reversibly improve pathological aging phenotypes without increasing rates of cancer. We previously identified glycoprotein nonmetastatic melanoma protein B (GPNMB) as a seno-antigen specifically expressed by senescent human vascular endothelial cells and demonstrated that vaccination against Gpnmb eliminated Gpnmb-positive senescent cells, leading to an improvement of age-associated pathologies in mice. The aim of this study was to elucidate whether GPNMB plays a role in senescent cells. We examined the potential role of GPNMB in senescent cells by testing the effects of GPNMB depletion and overexpression in vitro and in vivo. Depletion of GPNMB from human vascular endothelial cells shortened their replicative lifespan and increased the expression of negative cell cycle regulators. Conversely, GPNMB overexpression protected these cells against stress-induced premature senescence. Depletion of Gpnmb led to impairment of vascular function and enhanced atherogenesis in mice, whereas overexpression attenuated dietary vascular dysfunction and atherogenesis. GPNMB was upregulated by lysosomal stress associated with cellular senescence and was a crucial protective factor in maintaining lysosomal integrity. GPNMB is a seno-antigen that acts as a survival factor in senescent cells, suggesting that targeting seno-antigens such as GPNMB may be a novel strategy for senolytic treatments.
The tissue inhibitors of metalloproteinases (TIMPs) are a family of multifunctional proteins which have been shown to be upregulated in various types of cancers. However, the contribution of TIMPs in breast cancer is not fully understood, not to mention triple negative breast cancer (TNBC). This study’s aim was to evaluate the contribution of TIMP-1 rs4898, rs6609533, and rs2070584 genotypes to the risk of breast cancer, especially the subtype of TNBC. The contributions of these TIMP-1 genotypes to cancer risk were examined among 1232 breast cancer patients and 1232 healthy controls, and several clinicopathologic factors were also analyzed. The results showed that the percentages of CC, CT, and TT of TIMP-1 rs4898 were differentially distributed at 28.5%, 33.1% and 38.4% in the breast cancer patient group and 34.5%, 41.0% and 24.5% in the control group, respectively (P for trend = 7.99*10-13). It was also found that the CC genotype carriers were of increased risk for breast cancer (odds ratio = 1.90, 95% confidence interval = 1.55-2.33, P = 0.0001) than the TT genotype carriers. In addition, we analyzed the allelic frequency distributions of all three TIMP-1s, and the results showed that the C allele of TIMP-1 rs4898 contributes to an increase in breast cancer susceptibility (P = 2.41*10-12). On the other hand, there was no difference found in the distribution of genotypic or allelic frequencies among the patients and the controls for TIMP-1 rs6609533 and rs2070584. Thus, it is our conclusion that the CC genotype of TIMP-1 rs4898 compared to the TT wild-type genotype may increase the risk for breast cancer, especially TNBC in Taiwan, and may serve as an early detective and predictive marker.
Our results indicate that the MMP1 rs1799750 1G allele is a protective biomarker for childhood ALL.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.