Red-light phosphor materials are crucial components in solid-state lighting (SSL) for simulating natural sunlight. Mn-doped Mg 2 TiO 4 is a promising fluoride-free redemitting phosphor; however, a sensitizer is necessary to enhance its brightness. In this work, we perform ab initio calculations based on the density functional theory (DFT) to systematically examine the electronic-band coupling between the luminescent center, Mn, and several possible sensitizers, Zn, Nb, Mo, In, Sn, and Ta. Nb was identified as the optimal sensitizer. Well-crystallized 0.1 at. % Mn and 0.0−0.7 at. % Nbcodoped Mg 2 TiO 4 were synthesized at 1450 °C. Synchrotronradiation-based X-ray absorption spectroscopy (XAS) experimentally validated the proposed atomistic structure, indicating that the Nb 5+ dopant substitutes Ti 4+ at the 16d sites, leading to the formation of Ti vacancies and of a parasitic MgTiO 3 phase. Effective sensitization, resulting in a 243% enhancement of the photoluminescence intensity, was achieved. The 0.1 at. % Mn and 0.5 at. % Nb-codoped Mg 2 TiO 4 were obtained as an ultrabright "rare-earth-free" (RE-free) and "fluoride-free" red-light phosphor.
To reduce power consumption of transparent oxide‐semiconductor thin film transistors, a gate dielectric material with high dielectric constant and low leakage current density is favorable. According to previous study, the bulk TiNb2O7 with outstanding dielectric properties may have an interest in its thin‐film form. The optical, chemical states and surface morphology of sol‐gel derived TiNb2O7 (TNO) thin films are investigated the effect of postannealing temperature lower than 500°C, which is crucial to the glass transition temperature. All films possess a transmittance near 80% in the visible region. The existence of non‐lattice oxygen in the TNO film is proposed. The peak area ratio of non‐lattice oxygen plays an important role in the control of leakage current density of MIM capacitors. Also, the capacitance density and dissipation factor were affected by the indium tin oxide (ITO) sheet resistance at high frequencies. The sample after postannealing at 300°C and electrode‐annealing at 150°C possesses a high dielectric constant (>30 at 1 MHz) and a low leakage current density (<1 × 10−6 A/cm2 at 1 V), which makes it a very promising gate dielectric material for transparent oxide‐semiconductor thin film transistors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.