BackgroundTumor suppressor WOX1 (also named WWOX or FOR) is known to participate in neuronal apoptosis in vivo. Here, we investigated the functional role of WOX1 and transcription factors in the delayed loss of axotomized neurons in dorsal root ganglia (DRG) in rats.Methodology/Principal FindingsSciatic nerve transection in rats rapidly induced JNK1 activation and upregulation of mRNA and protein expression of WOX1 in the injured DRG neurons in 30 min. Accumulation of p-WOX1, p-JNK1, p-CREB, p-c-Jun, NF-κB and ATF3 in the nuclei of injured neurons took place within hours or the first week of injury. At the second month, dramatic nuclear accumulation of WOX1 with CREB (>65% neurons) and NF-κB (40–65%) occurred essentially in small DRG neurons, followed by apoptosis at later months. WOX1 physically interacted with CREB most strongly in the nuclei as determined by FRET analysis. Immunoelectron microscopy revealed the complex formation of p-WOX1 with p-CREB and p-c-Jun in vivo. WOX1 blocked the prosurvival CREB-, CRE-, and AP-1-mediated promoter activation in vitro. In contrast, WOX1 enhanced promoter activation governed by c-Jun, Elk-1 and NF-κB. WOX1 directly activated NF-κB-regulated promoter via its WW domains. Smad4 and p53 were not involved in the delayed loss of small DRG neurons.Conclusions/SignificanceRapid activation of JNK1 and WOX1 during the acute phase of injury is critical in determining neuronal survival or death, as both proteins functionally antagonize. In the chronic phase, concurrent activation of WOX1, CREB, and NF-κB occurs in small neurons just prior to apoptosis. Likely in vivo interactions are: 1) WOX1 inhibits the neuroprotective CREB, which leads to eventual neuronal death, and 2) WOX1 enhances NF-κB promoter activation (which turns to be proapoptotic). Evidently, WOX1 is the potential target for drug intervention in mitigating symptoms associated with neuronal injury.
Aging is an important determinant of adult hippocampal neurogenesis as the proliferation of neural stem/precursor cells (NSCs) declines dramatically before middle age. Contrary to this, physical exercise is known to promote adult hippocampal neurogenesis. The objective of this study is to investigate the effects of mandatory treadmill running (TR) on neurogenesis, including 1) NSCs proliferation, 2) neurite outgrowth of neuronal progenitor cells, and 3) the survival of newborn neurons in dentate area of middle-aged animals. Compared with 3-mo-old mice, numbers of mitotic cells and neuronal progenitor cells decreased dramatically by middle age and remained at low levels after middle age. Five weeks of TR not only increased NSC proliferation and the number of immature neurons but also promoted the maturation and survival of immature neurons in middle-aged mice. The neurogenic and neurotrophic effects of TR were not due to the reduction of the age-related elevation of serum corticosterone. Significantly, 5 wk of TR restored the age-dependent decline of brain-derived neurotrophic factor and its receptor, TrkB, which are known to promote neuronal differentiation and survival. Taken together, mandatory running exercise alters the brain chemistries of middle-aged animals toward an environment that is favorable to NSC proliferation, survival, and maturation.
WW domain-containing oxidoreductase (named WWOX, FOR or WOX1) is a pro-apoptotic protein and tumor suppressor. Animals treated with dopaminergic neurotoxin 1-methyl-4-phenyl-pyridinium (MPP+) develop Parkinson's disease (PD)-like symptoms. Here we investigated whether WOX1 is involved in MPP+-induced neurodegeneration. Upon insult with MPP+ in rat brains, WOX1 protein was upregulated and phosphorylated at Tyr33 (or activated) in the injured neurons in the striatum and cortex ipsilaterally to intoxication, as determined by immunohistochemistry and Western blotting. Also, WOX1 was present in the condensed nuclei and damaged mitochondria of degenerative neurons, as revealed by transmission immunoelectron microscopy. Time-lapse microscopy revealed that MPP+ induced membrane blebbing and shrinkage of neuroblastoma SK-N-SH cells. Dominant-negative WOX1, a potent inhibitor of Tyr33 phosphorylation, abolished this event, indicating a critical role of the phosphorylation in apoptosis. c-Jun N-terminal kinase (JNK1) is known to bind and counteract the apoptotic function of WOX1. Suppression of JNK1 function by a dominant-negative spontaneously induced WOX1 activation. WOX1 physically interacted with JNK1 in SK-N-SH cells and rat brain extracts. MPP+ rapidly increased the binding, followed by dissociation, which is probably needed for WOX1 to exert apoptosis. We synthesized a short Tyr33-phosphorylated WOX1 peptide (11 amino acid residues). Interestingly, this peptide blocked MPP+-induced neuronal death in the rat brains, whereas non-phospho-WOX1 peptide had no effect. Together, activated WOX1 plays an essential role in the MPP+-induced neuronal death. Our synthetic phospho-WOX1 peptide prevents neuronal death, suggestive of its therapeutic potential in mitigating the symptoms of PD.
The rate of neurogenesis is determined by 1) the number of neural stem/progenitor cells (NSCs), 2) proliferation of NSCs, 3) neuron lineage specification, and 4) survival rate of the newborn neurons. Aging lowers the rate of hippocampal neurogenesis, while exercise (Ex) increases this rate. However, it remains unclear which of the determinants are affected by aging and Ex. We characterized the four determinants in different age groups (3, 6, 9, 12, 21 months) of mice that either received one month of Ex training or remained sedentary. Bromodeoxyuridine (BrdU) was injected two hours before sacrificing the mice to label the proliferating cells. The results showed that the number of newborn neurons massively decreased (>95%) by the time the mice reached nine months of age. The number of NSC was mildly reduced during aging, while Ex delayed such decline. The proliferation rates were greatly decreased by the time the mice were 9-month-old and Ex could not improve the rates. The rates of neuron specification were decreased during aging, while Ex increased the rates. The survival rate was not affected by age or Ex. Aging greatly reduced newborn neuron maturation, while Ex potently enhanced it. In conclusion, age-associated decline of hippocampal neurogenesis is mainly caused by reduction of NSC proliferation. Although Ex increases the NSC number and neuron specification rates, it doesn't restore the massive decline of NSC proliferation rate. Hence, the effect of Ex on the rate of hippocampal neurogenesis during aging is limited, but Ex does enhance the maturation of newborn neurons.
Dynamic processes of capacitively coupled hydrogen plasmas driven by nanosecond pulsed high voltages at near-atmospheric pressure are investigated with particle-in-cell simulations. It is found that propagation of an ionization front leads to a rapid increase in plasma density and the characteristics of the ionization front propagation are in good agreement with earlier experimental observations. The simulation has also revealed that electrons can form a non-Maxwellian distribution in the cathode sheath despite the high gas pressure. Therefore, the exact heating rates of such plasmas can be obtained only from such kinetic calculations as we have employed in this study.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.