This paper reports a versatile nano-sensor technology using “top-down” poly-silicon nanowire field-effect transistors (FETs) in the conventional Complementary Metal-Oxide Semiconductor (CMOS)-compatible semiconductor process. The nanowire manufacturing technique reduced nanowire width scaling to 50 nm without use of extra lithography equipment, and exhibited superior device uniformity. These n type polysilicon nanowire FETs have positive pH sensitivity (100 mV/pH) and sensitive deoxyribonucleic acid (DNA) detection ability (100 pM) at normal system operation voltages. Specially designed oxide-nitride-oxide buried oxide nanowire realizes an electrically Vth-adjustable sensor to compensate device variation. These nanowire FETs also enable non-volatile memory application for a large and steady Vth adjustment window (>2 V Programming/Erasing window). The CMOS-compatible manufacturing technique of polysilicon nanowire FETs offers a possible solution for commercial System-on-Chip biosensor application, which enables portable physiology monitoring and in situ recording.
This study proposes a vascular endothelial growth factor (VEGF) biosensor for diagnosing various stages of cervical carcinoma. In addition, VEGF concentrations at various stages of cancer therapy are determined and compared to data obtained by computed tomography (CT) and cancer antigen 125 (CA-125). The increase in VEGF concentrations during operations offers useful insight into dosage timing during cancer therapy. This biosensor uses Avastin as the biorecognition element for the potential cancer biomarker VEGF and is based on a n-type polycrystalline silicon nanowire field-effect transistor (poly-SiNW-FET). Magnetic nanoparticles with poly[aniline-co-N-(1-one-butyric acid) aniline]-Fe3O4 (SPAnH-Fe3O4) shell-core structures are used as carriers for Avastin loading and provide rapid purification due to their magnetic properties, which prevent the loss of bioactivity; furthermore, the high surface area of these structures increases the quantity of Avastin immobilized. Average concentrations in human blood for species that interfere with detection specificity are also evaluated. The detection range of the biosensor for serum samples covers the results expected from both healthy individuals and cancer patients.
The formation of a uniform, high tensile stress and low silicide/Si interfacial resistance nickel silicide in nMOSFET by introducing pulsed laser annealing (PLA) is reported. This annealing approach facilitated the phase transformation of nickel silicide to Si-rich NiSi x compounds using a low-thermal-budget process, improves the silicide/Si interface regularity and avoids familiar (111) NiSi 2 facet formation at a laser energy of 1.5 J cm À2. By increasing laser energy density up to 2.3 J cm À2 , the device performance and statistics junction leakage distribution were degraded due to the increased sheet resistance of silicide layer and the destroyed silicide/Si interface morphology. When the PLA with a laser energy density of 1.5 J cm À2 was employed for nickel silicidation on the p-type Schottky diodes, a 0.16 eV hole Schottky barrier height (SBH) increase from 0.52 to 0.68 eV was observed. In addition, the application of PLA for source/drain silicidation of nMOSFETs demonstrated an 8% enhancement in I on ÀI off characteristic relative to that obtained through the conventional two-step rapid thermal annealing (RTA). This PLA method holds promise as a potential replacement for current nickel silicide annealing approaches toward extremely scaled-down transistors.
One chip solution for SMPS (Switch Mode Power Supply) has been drawing great attention of the designers with its green mode standby power and high efficiency in the AC-DC adaptor and LED lighting applications. The UHV (ultra-High Voltage) foundry process, which enables the integration solution for green compliance SMPS, is proposed in this paper. The technology integrated low voltage CMOS (5V), medium voltage (40V) and UHV (700V) devices in one single process. The UHV technology provides a novel UHV device structure with RESURF (Reduce-SURface-Field) effect to sustain ultra-high breakdown voltage and not to affect the original low/medium voltage devices performance in the same time. Thus, the concept of this novel structure is easily to apply to the other technology nodes and extend its voltage-sustaining range by adjusting the drift length for the RESURF structure. In this research, The 700V technology has realized the performance that the BVdss (breakdown voltage) is 800V with Ron sp (on-resistance) of 27OmOhm-cm2. In the same time, the process challenge to optimize 700V device performance against un-balanced mobile charge issue was also discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.