This paper describes the design and fabrication of a “pop-up” electrochemical paper-based analytical device (pop-up-EPAD) to measure beta-hydroxybutyrate (BHB)—a key biomarker for diabetic ketoacidosis—using a commercial glucometer. Pop-up-EPADs are inspired by pop-up greeting cards and children’s books. They are made from a single sheet of paper folded into a three-dimensional (3D) device that changes shape, and fluidic and electrical connectivity, by simply folding and unfolding the structure. The reconfigurable 3D structure makes it possible to change the fluidic path and to control timing; it also provides mechanical support for the folded and unfolded structures that enables good registration and repeatability on folding. A pop-up-EPAD designed to detect BHB shows performance comparable to commercially available plastic test strips over the clinically relevant range of BHB in blood when used with a commercial glucometer that integrates the ability to measure glucose and BHB (combination BHB/glucometer). With simple modifications of the electrode and fluid path design, the pop-up-EPAD also detects BHB using a simple glucometer—a device that is much more available than combination BHB/glucometers. Strategies that use a “3D pop-up”—that is, large-scale changes a 3D structure and fluidic paths—by folding/unfolding add functionality (e.g., controlled timing, fluidic handling and path programming, control over complex sequences of steps, and alterations in electrical connectivity) to EPADs, and should enable the development of new classes of paper-based diagnostic devices.
This study reports the effect of N,C-ITO (indium tin oxide) layer on composite N,C-TiO 2 /N,C-ITO/ITO (Ti/TO) electrode used for efficient photoelectrocatalytic (PEC) degradation of aqueous pollutant with simultaneous hydrogen production. The structural properties of the composite Ti/TO electrode that determined by X-ray diffraction and Raman scattering, show primarily the crystallized anatase TiO 2 phase and distinct diffraction patterns of polycrystalline In 2 O 3 phase. Under solar light illumination, the composite Ti/TO electrode yields simultaneously a hydrogen production rate of 12.0 μmol cm −2 h −1 and degradation rate constant of 12.6 × 10 −3 cm −2 h −1 in organic pollutant. It implies that the overlaid N,C-TiO 2 layer enhances not only the photocurrent response of the composite Ti/TO electrode at entire applied potentials, but also the flat band potential; a shift of about 0.1 V toward cathode, which is desperately beneficial in the PEC process. In light of the X-ray photoelectron spectroscopy findings, these results are attributable partly to the synergetic effect of N,C-codoping into the TiO 2 and ITO lattices on their band gap narrowing and photosensitizing as well. Thus, the Ti/TO electrode can potentially serve an efficient PEC electrode for simultaneous pollutant degradation and hydrogen production.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.