We present a new semiellipsoid microlens fabrication method that controls the printing gap in the UV lithography process without thermal reflow. The UV proximity printing method can precisely control the curvature radius ratio of the semiellipsoid microlens in the fabrication process. The proposed fabrication method facilitates mass production to achieve a high-yield and high-coupling semiellipsoid microlens that is suitable to be used in commercial fiber transmission systems. A semiellipsoid microlens can be tipped on a single-mode fiber end to improve power coupling efficiency from laser diodes. The semiellipsoid microlens allows increasing the fiber spot size and numerical aperture. It is very important to control the geometric parameters in the assembly procedure to increase the optical coupling efficiency between the laser diode and single-mode fiber. Wide misalignment tolerance, low loss, and low manufacturing cost could be achieved by the proposed fabrication method. The theoretical model is first developed to predict the optical coupling efficiency for various microstructure geometries of semiellipsoid microlens and assembly parameters in this study. Then, the Taguchi method is applied to obtain the optimal geometric parameters setting. The results show that optical coupling efficiency could be significantly improved by using the optimal geometric parameters setting.
We present a new semiellipsoid microlens fabrication method using the lift-off and alignment exposure processes. The lift-off method is used to create an elliptical base before the thermal reflow process. During the photoresist thermal reflow process, the elliptical base can precisely define the bottom shape of the liquid photoresist, and fabricate the semiellipsoid microlens array with a large height and small radius of curvature. The prolate spheroid approximation method is developed to estimate the thickness of the elliptic photoresist column required by the semiellipsoid microlens of a certain height, with the error being controlled within ± 3%. Electroforming technology is then used to convert the photoresist patterns into a metallic mold for a PDMS ellipsoidal microlens. The experiment results show that the geometries of a semiellipsoid microlens can be accurately defined by three parameters: the length of the major axis of the elliptical base, the length of the minor axis of the elliptical base and the thickness of the elliptical photoresist column. The proposed fabrication method facilitates mass production to achieve a high-yield and high-coupling semiellipsoid microlens that is suitable for use in commercial fiber transmission systems
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.