The endoplasmic reticulum (ER) and mitochondria form contacts that support communication between these two organelles, including synthesis and transfer of lipids, and the exchange of calcium, which regulates ER chaperones, mitochondrial ATP production, and apoptosis. Despite the fundamental roles for ER-mitochondria contacts, little is known about the molecules that regulate them. Here we report the identification of a multifunctional sorting protein, PACS-2, that integrates ER-mitochondria communication, ER homeostasis, and apoptosis. PACS-2 controls the apposition of mitochondria with the ER, as depletion of PACS-2 causes BAP31-dependent mitochondria fragmentation and uncoupling from the ER. PACS-2 also controls formation of ER lipid-synthesizing centers found on mitochondria-associated membranes and ER homeostasis. However, in response to apoptotic inducers, PACS-2 translocates Bid to mitochondria, which initiates a sequence of events including the formation of mitochondrial truncated Bid, the release of cytochrome c, and the activation of caspase-3, thereby causing cell death. Together, our results identify PACS-2 as a novel sorting protein that links the ER-mitochondria axis to ER homeostasis and the control of cell fate, and provide new insights into Bid action.
The HIV-1 Nef-mediated downregulation of cell surface MHC-I molecules to the trans-Golgi network (TGN) enables HIV-1 to escape immune surveillance. However, the cellular pathway used by Nef to downregulate MHC-I is unknown. Here, we show that Nef and PACS-1 combine to usurp the ARF6 endocytic pathway by a PI3K-dependent process and downregulate cell surface MHC-I to the TGN. This mechanism requires the hierarchical actions of three Nef motifs-the acidic cluster 62EEEE(65), the SH3 domain binding site 72PXXP(75), and M(20)-in controlling PACS-1-dependent sorting to the TGN, ARF6 activation, and sequestering internalized MHC-I to the TGN, respectively. These data provide new insights into the cellular basis of HIV-1 immunoevasion.
HIV-1 Nef, which is required for the efficient onset of AIDS, enhances viral replication and infectivity by exerting multiple effects on infected cells. Nef downregulates cell-surface MHC-I molecules by an uncharacterized PI3K pathway requiring the actions of two Nef motifs-EEEE(65) and PXXP(75). We report that the Nef EEEE(65) targeting motif enables Nef PXXP(75) to bind and activate a trans-Golgi network-localized Src family tyrosine kinase (SFK). The Nef/SFK complex then recruits and phosphorylates the tyrosine kinase ZAP-70, which binds class I PI3K to trigger MHC-I downregulation in primary CD4+ T cells. In promonocytic cells, Nef/SFK recruits the ZAP-70 homolog Syk to downregulate MHC-I, implicating this PI3K pathway in multiple HIV-1 reservoirs. Isoform-specific PI3K inhibitors repress MHC-I downregulation, identifying them as potential therapeutic agents to combat HIV-1. The discovery of this Nef-SFK-ZAP-70/Syk-PI3K signaling pathway explains the hierarchal role of the Nef motifs in effecting immunoevasion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.