Electrical impedance tomography (EIT), a noninvasive and radiation-free medical imaging technique, has been used for continuous real-time regional lung aeration. However, adhesive electrodes could cause discomfort and increase the risk of skin injury during prolonged measurement. Additionally, the conductive gel between the electrodes and skin could evaporate in long-term usage and deteriorate the signal quality. To address these issues, in this work, textile electrodes integrated with a clothing belt are proposed to achieve EIT lung imaging along with a custom portable EIT system. The simulation and experimental results have verified the validity of the proposed portable EIT system. Furthermore, the imaging results of using the proposed textile electrodes were compared with commercial electrocardiogram electrodes to evaluate their performance.
Handheld ultrasound devices have been widely used for diagnostic applications. The use of the acoustic-field beamforming (AFB) method has been proposed for handheld ultrasound to reduce electricity consumption and avoid battery and unwanted heat issues. However, the image quality, such as the contrast ratio and contrast-to-noise-ratio, are poorer with this technique than with the conventional delay-and-sum method. To address the problems associated with the worse image quality in AFB imaging, in this paper we propose the use of an AFB-based generalized coherence factor (GCF) technique, in which the GCF weighting developed for adaptive beamforming is extended to AFB. Simulation data, experimental results, and in vivo testing verified the efficacy of our proposed AFB-based GCF technique.
The fusion information on the side window of the car may cause the passenger's motion sickness as moving. This motion sickness mixed the visual‐induced and caused by riding a vehicle. In this research, we propose a method of the reference image to solve reduce motion sickness and used the MSSQ‐short to judge motion sickness degree.
Electrical impedance tomography (EIT) is a radiation-free and noninvasive medical image reconstruction technique in which a current is injected and the reflected voltage is received through electrodes. EIT electrodes require good connection with the skin for data acquisition and image reconstruction. However, detached electrodes are a common occurrence and cause measurement errors in EIT clinical applications. To address these issues, in this study, we proposed a method for detecting faulty electrodes using the differential voltage value of the detached electrode in an EIT system. Additionally, we proposed the voltage-replace and voltage-shift methods to compensate for invalid data from the faulty electrodes. In this study, we present the simulation, experimental, and in vivo chest results of our proposed methods to verify and evaluate the feasibility of this approach.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.