Human hepatitis delta (delta) virus (HDV) is a form of defective virus, which infects humans only in the presence of a co-infecting hepatitis B virus (HBV). HDV superinfection in a chronic HBV carrier often results in severe chronic hepatitis and cirrhosis, whereas acute HDV and HBV co-infection is frequently associated with fulminant hepatitis. HDV consists of a 36-nm particle, which contains an envelope with HBV surface antigen, and a nucleocapsid containing the hepatitis delta-antigen (HDAg) and an RNA genome of 1.75 kilobases (kb). Recently, the genomic RNA from an HDV serially passaged in chimpanzees has been cloned and sequenced in a study which showed that the HDV RNA is a single-stranded circular molecule with properties similar to those of viroid or virusoid. However, it is not known whether serial passages in chimpanzees had altered the properties of human HDV. Here we report the cloning and sequencing of an HDV RNA isolated directly from a patient with acute delta-hepatitis. The sequence showed considerable divergence (11%) from that of the chimpanzee-adapted HDV. Five open reading frames (ORFs) of more than 100 amino acids in both genomic and anti-genomic sense were found. The largest ORF in antigenomic sense, which can code for 214 amino acids, may correspond to the HDAg.
An intracellular defective-interfering (DI) RNA, DIssE, of mouse hepatitis virus (MHV) obtained after serial high multiplicity passage of the virus was cloned and sequenced. DIssE RNA is composed of three noncontiguous genomic regions, representing the first 864 nucleotides of the 5' end, an internal 748 nucleotides of the polymerase gene, and 601 nucleotides from the 3' end of the parental MHV genome. The DIssE sequence contains one large continuous open reading frame. Two protein products from this open reading frame were identified both by in vitro translation and in DI-infected cells. Sequence comparison of DIssE and the corresponding parts of the parental virus genome revealed that DIssE had three base substitutions within the leader sequence and also a deletion of nine nucleotides located at the junction of the leader and the remaining genomic sequence. The 5' end of DIssE RNA was heterogeneous with respect to the number of UCUAA repeats within the leader sequence. The parental MHV genomic RNA appears to have extensive and stable secondary structures at the regions where DI RNA rearrangements occurred. These data suggest that MHV DI RNA may have been generated as a result of the discontinuous and nonprocessive manner of MHV RNA synthesis.
The coronavirus leader-primed transcription model proposes that free leader RNA species derived from the 5'-end of the genomic RNA are utilized as a primer for the transcription of subgenomic mRNAs. To elucidate the precise mechanism of leader-priming, we cloned and sequenced the 5'-end of the mouse hepatitis virus genomic RNA. The 5'-terminal sequences are identical to the leader sequences present at the 5'-end of the subgenomic mRNAs. Two possible hairpin loop structures and an AU-rich region around the 3'-end of the leader sequence may provide the termination site for leader RNA synthesis. The comparison of 5'-end genomic sequences and the intergenic start sites for mRNA transcription revealed that there are homologous regions of 7-18 nucleotides at the putative leader/body junction sites. Some intergenic regions contain a mismatching nucleotide within this homologous region. We propose that free leader RNA binds to the intergenic region due to this homology and is cleaved at the mismatching nucleotide before serving as a primer. Thus, the free leader RNA species may be longer than the leader sequences in the subgenomic mRNAs and different mRNAs may have different leader/body junction sites.
The mechanism of synthesis of the defective viral RNAs in cells infected with defective-interfering (DI) particles of mouse hepatitis virus was studied. Two DI-specific RNA species, DIssA of genomic size and DIssE of subgenomic size, were detected in DI-infected cells. Purified DI particles, however, were found to contain predominantly DIssA and only a trace amount of DIssE RNA. Despite its negligible amount, the DIssE RNA in virions appears to serve as the template for the synthesis of DIssE RNA in infected cells. This conclusion was supported by two studies. First, the uv target size for DIssE RNA synthesis is significantly smaller than that for DIssA. Second, when purified DIssE RNA was transfected into cells which had been infected with a helper virus, DIssE RNA could replicate itself and became a predominant RNA species in the infected cells. Thus, DIssE RNA was not synthesized from the genomic RNA of DI particles. By studying the relationship between virus dilution and the amount of intracellular viral RNA synthesis, we have further shown that DIssE RNA synthesis requires a helper function, but it does not utilize the leader sequence of the helper virus. In contrast, DIssA synthesis appears to be helper-independent and can replicate itself. Thus DIssA codes for a functional RNA polymerase.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.