Human hepatitis delta (delta) virus (HDV) is a form of defective virus, which infects humans only in the presence of a co-infecting hepatitis B virus (HBV). HDV superinfection in a chronic HBV carrier often results in severe chronic hepatitis and cirrhosis, whereas acute HDV and HBV co-infection is frequently associated with fulminant hepatitis. HDV consists of a 36-nm particle, which contains an envelope with HBV surface antigen, and a nucleocapsid containing the hepatitis delta-antigen (HDAg) and an RNA genome of 1.75 kilobases (kb). Recently, the genomic RNA from an HDV serially passaged in chimpanzees has been cloned and sequenced in a study which showed that the HDV RNA is a single-stranded circular molecule with properties similar to those of viroid or virusoid. However, it is not known whether serial passages in chimpanzees had altered the properties of human HDV. Here we report the cloning and sequencing of an HDV RNA isolated directly from a patient with acute delta-hepatitis. The sequence showed considerable divergence (11%) from that of the chimpanzee-adapted HDV. Five open reading frames (ORFs) of more than 100 amino acids in both genomic and anti-genomic sense were found. The largest ORF in antigenomic sense, which can code for 214 amino acids, may correspond to the HDAg.
Reaction to certain motifs in bacterial DNA is an important function of natural immunity. For example, single stranded oligonucleotides (ODN) containing the motif "not C, unmethylated C, G, not G" are powerful mitogens and apoptosis inhibitors for mouse spleen B cells. But replacing GCGTT or ACGTT with GCGGG or ACGGG converted a stimulatory 15‐mer ODN into an inhibitory ODN. All inhibitory ODN had three consecutive G, and a fourth G increased inhibitory activity, but a deazaguanosine substitution to prevent planar stacking did not affect activity. Inhibitory ODN blocked apoptosis protection and cell‐cycle entry induced by stimulatory ODN, but not that induced by lipopolysaccharide, anti‐CD40 or anti‐IgM+IL‐4. ODN‐driven up‐regulation of cyclin D2, c‐Myc, c‐Fos, c‐Jun and BclXL and down‐regulation of cyclin kinase inhibitor p27kip1 were all blocked by inhibitory ODN. The relative potency of a series of stimulatory and inhibitory ODN was the same for all readouts measured. Interference with uptake of stimulatory ODN could not account for their inhibitory effects. Even if addition of inhibitory ODN was delayed several hours, partial inhibition of stimulatory ODN effects occurred. Inhibitory ODN hold potential as antidotes for excessive ODN stimulation in the clinical setting and provide an important tool for studying ODN recognition.
The open reading frame 3 of the severe acute respiratory syndrome coronavirus (SARS-CoV) genome encodes a predicted protein 3a, consisting of 274 amino acids, that lacks any significant similarities to any known protein. We generated specific antibodies against SARS protein 3a by using a synthetic peptide (P2) corresponding to amino acids 261-274 of the putative protein. Anti-P2 antibodies and the sera from SARS patients could specifically detect the recombinant SARS protein 3a expressed in Escherichia coli and in Vero E6 cells. Expression of SARS protein 3a was detected at 8-12 h after infection and reached a higher level after $24 h in SARS-CoV-infected Vero E6 cells. Protein 3a was also detected in the alveolar lining pneumocytes and some intra-alveolar cells of a SARS-CoV-infected patient's lung specimen. Recombinant protein 3a expressed in Vero E6 cells and protein 3a in the SARS-CoV-infected cells was distributed over the cytoplasm in a fine punctate pattern with partly concentrated staining in the Golgi apparatus. Our study demonstrates that SARS-CoV indeed expresses a novel protein 3a, which is present only in SARS-CoV and not in other known CoVs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.