Band-trellis enumerative sphere shaping is proposed to decrease the energy variations in channel input sequences. Against sphere shaping, 0.74 dB SNR gain and up to 9% increase in data rates are demonstrated for single-span systems.
The capacity in space division multiplexing (SDM) systems with coupled channels is fundamentally limited by mode-dependent loss (MDL) and mode-dependent gain (MDG) generated in components and amplifiers. In these systems, MDL/MDG must be accurately estimated for performance analysis and troubleshooting. Most recent demonstrations of SDM with coupled channels perform MDL/MDG estimation by digital signal processing (DSP) techniques based on the coefficients of multiple-input multiple-output (MIMO) adaptive equalizers. Although these methods provide a valid indication of the order of magnitude of the accumulated MDL/MDG over the link, MIMO equalizers are usually updated according to the minimum mean square error (MMSE) criterion, which is known to depend on the channel signal-to-noise ratio (SNR). Therefore, MDL/MDG estimation techniques based on the adaptive filter coefficients are also impaired by noise. In this paper, we model analytically the influence of the SNR on DSP-based MDL/MDG estimation, and show that the technique is prone to errors. Based on the transfer function of MIMO MMSE equalizers, and assuming a known SNR, we calculate a correction factor that improves the estimation process in moderate levels of MDL/MDG and SNR. The correction factor is validated by simulation of a 6mode long-haul transmission link, and experimentally using a 3-mode transmission link. The results confirm the limitations of the standard estimation method in scenarios of high additive noise and MDL/MDG, and indicate the correction factor as a possible solution in practical SDM scenarios.
Abstract:We propose a cost-effective, reconfigurable optical access network by employing passive components in the remote node and dual conventional optical transceivers in ONUs. The architecture is demonstrated with bidirectional transmission at 10 Gb/s.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.