Probabilistic shaping based on constant composition distribution matching (CCDM) has received considerable attention as a way to increase the capacity of fiber optical communication systems. CCDM suffers from significant rate loss at short blocklengths and requires long blocklengths to achieve high shaping gain, which makes its implementation very challenging. In this paper, we propose to use enumerative sphere shaping (ESS) and investigate its performance for the nonlinear fiber optical channel. ESS has lower rate loss than CCDM at the same shaping rate, which makes it a suitable candidate to be implemented in real-time high-speed optical systems. In this paper, we first show that finite blocklength ESS and CCDM exhibit higher effective signal-to-noise ratio than their infinite blocklength counterparts. These results show that for the nonlinear fiber optical channel, large blocklengths should be avoided. We then show that for a 400 Gb/s dual-polarization 64-QAM WDM transmission system, ESS with short blocklengths outperforms both uniform signaling and CCDM. Gains in terms of both bit-metric decoding rate and bit-error rate are presented. ESS with a blocklength of 200 is shown to provide an extension reach of about 200 km in comparison with CCDM with the same blocklength. The obtained reach increase of ESS with a blocklength of 200 over uniform signaling is approximately 450 km (approximately 19%).
We transmit probabilistic enumerative sphere shaped dual-polarization 64-QAM at 350Gbit/s/channel over 1610km SSMF using a short blocklength of 200. A reach increase of 15% over constant composition distribution matching with identical blocklength is demonstrated.
published version features the final layout of the paper including the volume, issue and page numbers.
Link to publication
General rightsCopyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.• Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal.If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the "Taverne" license above, please follow below link for the End User
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.