A new class of polymers, which have a double-stranded polybinorbornene skeleton with multilayer planar oligoaryl linkers, defined as polymeric ladderphanes, are synthesized. The structures of these ladderphanes are determined by spectroscopic means. Photophysical studies and time-resolved fluorescence spectroscopic investigations reveal that there is a strong interaction between the chromophore linkers. Thus, Soret band splitting in the absorption spectrum of the polymer with porphyrin linker (12e), significant fluorescence quenching with oligoaryl linkers (12b-d), and excimer emission with a terphenylene-diethynylene linker (12a) are characteristic photophysical properties of these polymers. Scanning tunneling microscopy shows that polymers 12b and d exhibit a ladder-like morphology and form a supramolecular assembly leading to a two-dimensional ordered array on a highly oriented pyrolytic graphite surface.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.