Power bus structure, consisting of two parallel solid power and ground planes separated by an insulator, behaves as a cavity resonator at high frequencies. Noise on the power bus, due to a sudden change in the current drawn by an active component, can appear as an undesired spatial fluctuation in the voltage between power and ground, especially at resonant frequencies of the resultant cavity, which may lead to problems in signal integrity, excessive delays, false switching, and radiated emission. These resonances can be suppressed by introducing high-frequency loss into the structure. This paper investigates a simple method to reduce self-/transfer impedance of power/ground planes for mitigating power/ground bounce in high-speed printed circuit board design by adding a thin layer of magnetic material coating to the insidefacing surfaces of copper power and ground plates to increase their effective high-frequency surface impedance. The increased surface impedance will increase the attenuation constant of the propagating wave inside the cavity that benefits reduction of cavity's quality factor (Q factor). The simulation results obtained from a modified cavity resonator model show that increasing surface impedance can dramatically reduce self-and transfer impedances at board resonant frequencies.Index Terms-Cavity resonator model, ground bounce, magnetic material coating, self-/transfer impedance, simultaneous switching noise (SSN), surface impedance.
Bluetooth is a low-cost and short-range wireless communication technology. The Bluetooth device randomly searches and connects with other devices using the inquiry/inquiry scan and the page/page scan operations, resulting an uncontrolled scatternet topology. The unpredictable scatternet topology usually raises the problem of redundant traffic and causes inefficient communications. A traffic-aware restructuring protocol (TARP) is presented for partially restructuring a piconet or a pair of two neighboring piconets by applying role switch mechanism. The proposed TARP mainly consists of intra-piconet and inter-piconet restructuring protocols. According to the recent routes and their traffic load information, the intra-piconet restructuring protocol adjusts piconet structure by selecting the proper device to play a master role of a piconet and applies takeover operation to rapidly restructure the piconet topology. The inter-piconet restructuring protocol exchanges devices of two neighboring piconets to reduce the route length and thus improve the power and bandwidth consumptions and the end-to-end transmission delay. Performance results reveal that the proposed restructuring protocols reduce path length of recent routes and save power consumption, thus significantly improve the performance for a given connected scatternet.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.