The knowledge of conserved sequences in proteins is valuable in identifying functionally or structurally important residues. Generating the conservation profile of a sequence requires aligning families of homologous sequences and having knowledge of their evolutionary relationships. Here, we report that the conservation profile at the residue level can be quantitatively derived from a single protein structure with only backbone information. We found that the reciprocal packing density profiles of protein structures closely resemble their sequence conservation profiles. For a set of 554 nonhomologous enzymes, 74% (408/554) of the proteins have a correlation coefficient > 0.5 between these two profiles. Our results indicate that the three-dimensional structure, instead of being a mere scaffold for positioning amino acid residues, exerts such strong evolutionary constraints on the residues of the protein that its profile of sequence conservation essentially reflects that of its structural characteristics.
We have recently showed that the weighted contact number profiles (or the packing density profiles) of proteins are well correlated with those of the corresponding sequence conservation profiles. The results suggest that a protein structure may contain sufficient information about sequence conservation comparable to that derived from multiple homologous sequences. However, there are ambiguities concerning how to compute the packing density of the subunit of a protein complex. For the subunits of a complex, there are different ways to compute its packing density--one including the packing contributions of the other subunits and the other one excluding their contributions. Here we selected two sets of enzyme complexes. Set A contains complexes with the active sites comprising residues from multiple subunits, while set B contains those with the active sites residing on single subunits. In Set A, if the packing density profile of a subunit is computed considering the contributions of the other subunits of the complex, it will agree better with the sequence conservation profile. But in Set B the situations are reversed. The results may be due to the stronger functional and structural constraints on the evolution processes on the complexes of Set A than those of Set B to maintain the enzymatic functions of the complexes. The comparison of the packing density and the sequence conservation profiles may provide a simple yet potentially useful way to understanding the structural and evolutionary couplings between the subunits of protein complexes.
The conservation profile of a protein is a curve of the conservation levels of amino acids along the sequence. Biologists are usually more interested in individual points on the curve (namely, the conserved amino acids) than the overall shape of the curve. Here, we show that the conservation curves of proteins bear the imprints of molecules that are evolutionarily coupled to the proteins. Our method is based on recent studies that a sequence conservation profile is quantitatively linked to its structural packing profile. We find that the conservation profiles of nucleic acid (NA) binding proteins are better correlated with the packing profiles of the protein-NA complexes than those of the proteins alone. This indicates that a nucleic acid binding protein evolves to accommodate the nucleic acid in such a way that the residues involved in binding have their conservation levels closely coupled with the specific nucleotides.
The conservation level of a residue is a useful measure about the importance of that residue in protein structure and function. Much information about sequence conservation comes from aligning homologous sequences. Profiles showing the variation of the conservation level along the sequence are usually interpreted in evolutionary terms and dictated by site similarities of a proper set of homologous sequences. Here, we report that, of the viral icosahedral capsids, the sequence conservation profile can be determined by variations in the distances between residues and the centroid of the capsid – with a direct inverse proportionality between the conservation level and the centroid distance – as well as by the spatial variations in local packing density. Examining both the centroid and the packing density models against a dataset of 51 crystal structures of nonhomologous icosahedral capsids, we found that many global patterns and minor features derived from the viral structures are consistent with those present in the sequence conservation profiles. The quantitative link between the level of conservation and structural features like centroid-distance or packing density allows us to look at residue conservation from a structural viewpoint as well as from an evolutionary viewpoint.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.