Compared to C60, carbon nanotubes, and graphite, graphene more effectively lowers the dehydrogenation temperature and improves the dehydrogenation kinetics of LiAlH4. With 15 wt% graphene incorporation, the initial hydrogen release temperature is ~80 °C (60 °C lower than that of pristine LiAlH4).
Fe nanoparticles (∼10 nm), used to grow carbon nanotubes (CNTs), have an outstanding ability to catalyze the dehydrogenation of LiAlH4 . The CNTs help connect Fe and LiAlH4 and create microchannels among the composite, thus promoting the release of hydrogen. Inspired by these results, a supercritical-CO2 -fluid-assisted deposition technique is employed to decorate the Fe/CNTs with highly dispersed nanosized Ni (∼2 nm in diameter) for better performance. With the incorporation of 10 wt % of this hierarchical catalyst (Ni/Fe/CNTs), the initial dehydrogenation temperature of LiAlH4 is decreased from ∼135 to ∼40 °C. At 100 °C, this catalyzed LiAlH4 takes only ∼0.1 h to release 4.5 wt % hydrogen, which is more than 100 times faster than the time needed with pristine LiAlH4 . The dehydrogenation mechanism of the complex hydride is examined using in situ synchrotron X-ray diffraction.
Objectives: The study is aim at evaluating the effects of GABA tea on colorectal cancer cell proliferation, colony formation and invasion. Methods: Colorectal cancer cell line HT-29 treated with GABA tea extract (12.5~200g/mL) were assessed for viability by MTT assay and for their invasion potential by evaluating their ability to penetrate through a matrix gel-coated Boyden chamber. Results: GABA tea extract exhibited slight effect on cell proliferation of HT-29. The colony formation was inhibited in both culture plate and Boyden chamber. Conclusions: GABA tea extract inhibited the colony formation and invasion of colorectal cancer cells. GABA tea is a potential adjuvant agent for colorectal cancer therapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.