Vacuolar proton-pyrophosphatase (H(+)-PPase) of mung bean seedlings contains a single kind of polypeptide with a molecular mass of approx. 73 kDa. However, in this study, a molecular mass of approx. 140 kDa was obtained for the purified vacuolar H(+)-PPase by size-exclusion gel-filtration chromatography, suggesting that the solubilized form of this enzyme is a dimer. Radiation inactivation analysis of tonoplast vesicles yielded functional masses of 141.5 +/- 10.8 and 158.4 +/- 19.5 kDa for PP1 hydrolysis activity and its supported proton translocation respectively. These results confirmed the in situ dimeric structure of the membrane-bound H(+)-PPase of plant vacuoles. Further target-size analysis showed that the functional unit of purified vacuolar H(+)-PPase was 71.1 +/- 6.7 kDa, indicating that only one subunit of the purified dimeric complex would sufficiently display its enzymic reaction. Moreover, in the presence of valinomycin and KCl, the functional size of membrane-bound H(+)-PPase was decreased to approx. 63.4 +/- 6.3 kDa. A working model was proposed to elucidate the structure of native H(+)-PPase on vacuolar membrane as a functional dimer. Factors that would disturb the membrane, e.g. membrane solubilization and the addition of valinomycin and KCl, may induce an alteration in its enzyme structure, subsequently resulting in a different functional size.
Asparaginyl endopeptidase is a cysteine endopeptidase that has strict substrate specificity toward the carboxyl side of asparagine residues, and is possibly involved in the post-translational processing of proproteins. In this report one full-length cDNA, SPAE, was isolated from senescent leaves of sweet potato (Ipomoea batatas (L.) Lam). SPAE contained 1479 nucleotides (492 amino acids) in the open reading frame, and exhibited high amino acid sequence homologies (c. 61-68%) with asparaginyl endopeptidases of Vicia sativa, Phaseolus vulgaris, Canavalia ensiformis, and Vigna mungo. SPAE probably encoded a putative precursor protein. Via cleavage of the N- and C-termini, it produced a mature protein containing 325 amino acids (from the 51st to the 375th amino acid residues), the conserved catalytic residues (the 173rd His and 215th Cys amino acid residues), and the putative N-glycosylation site (the 332nd Asn amino acid residue). Semi-quantitative RT-PCR and western blot hybridization showed that SPAE gene expression was enhanced significantly in natural senescent leaves and in dark- and ethephon-induced senescent leaves, but was much less in mature green leaves, stems, and roots. Phylogenic analysis showed that SPAE displayed close association with vacuolar processing enzymes (legumains/asparaginyl endopeptidases), which function via cleavage for proprotein maturation in the protein bodies during seed maturation and germination. In conclusion, sweet potato SPAE is probably a functional, senescence-associated gene and its mRNA and protein levels were significantly enhanced in natural and induced senescent leaves. The possible role and function of SPAE associated with bulk protein degradation and mobilization during leaf senescence were also discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.