Peroxisomes were visualized in living cells of various tissues in transgenic Arabidopsis by green fluorescent protein (GFP) through the addition of the peroxisomal targeting signal 1 (PTS1) or PTS2. The observation using confocal laser scanning microscopy revealed that the GFP fluorescence signals were detected as spherical spots in all cells of two kinds of transgenic plants. Immunoelectron microscopic analysis using antibodies against the peroxisomal marker protein, catalase, showed the presence of GFP in peroxisomes, confirming that GFP was correctly transported into peroxisomes by PTS1 or PTS2 pathways. It has been also revealed that peroxisomes are motile organelles whose movement might be caused by cytoplasmic flow. The movement of peroxisomes was more prominent in root cells than that in leaves, and divided into two categories: a relatively slow, random, vibrational movement and a rapid movement. Treatment with anti-actin and anti-tubulin drugs revealed that actin filaments involve in the rapid movement of peroxisomes. Moreover, abnormal large peroxisomes are present as clusters at the onset of germination, and these clusters disappear in a few days. Interestingly, tubular peroxisomes were also observed in the hypocotyl. These findings indicate that the shape, size, number and movement of peroxisomes in living cells are dynamic and changeable rather than uniform.
SummaryPeroxisomes undergo dramatic changes in size, shape, number, and position within the cell, but the division process of peroxisomes has not been characterized. We screened a number of Arabidopsis mutants with aberrant peroxisome morphology (apm mutants). In one of these mutants, apm1, the peroxisomes are long and reduced in number, apparently as a result of inhibition of division. We showed that APM1 encodes dynamin-related protein 3A (DRP3A), and that mutations in APM1/DRP3A also caused aberrant morphology of mitochondria. The transient expression analysis showed that DRP3A is associated with the cytosolic side of peroxisomes. These ®ndings indicate that the same dynamin molecule is involved in peroxisomal and mitochondrial division in higher plants. We also report that the growth of Arabidopsis, which requires the cooperation of various organelles, including peroxisomes and mitochondria, is repressed in apm1, indicating that the changes of morphology of peroxisomes and mitochondria reduce the ef®ciency of metabolism in these organelles.
SummaryPeroxisome biogenesis requires various complex processes including organelle division, enlargement and protein transport. We have been studying a number of Arabidopsis apm mutants that display aberrant peroxisome morphology. Two of these mutants, apm2 and apm4, showed green fluorescent protein fluorescence in the cytosol as well as in peroxisomes, indicating a decrease of efficiency of peroxisome targeting signal 1 (PTS1)-dependent protein transport to peroxisomes. Interestingly, both mutants were defective in PTS2-dependent protein transport. Plant growth was more inhibited in apm4 than apm2 mutants, apparently because protein transport was more severely decreased in apm4 than in apm2 mutants. APM2 and APM4 were found to encode proteins homologous to the peroxins PEX13 and PEX12, respectively, which are thought to be involved in transporting matrix proteins into peroxisomes in yeasts and mammals. We show that APM2/PEX13 and APM4/PEX12 are localized on peroxisomal membranes, and that APM2/PEX13 interacts with PEX7, a cytosolic PTS2 receptor. Additionally, a PTS1 receptor, PEX5, was found to stall on peroxisomal membranes in both mutants, suggesting that PEX12 and PEX13 are components that are involved in protein transport on peroxisomal membranes in higher plants. Proteins homologous to PEX12 and PEX13 have previously been found in Arabidopsis but it is not known whether they are involved in protein transport to peroxisomes. Our findings reveal that APM2/PEX13 and APM4/PEX12 are responsible for matrix protein import to peroxisomes in planta.
Peroxisomes have pivotal roles in several metabolic processes, such as the detoxification of H 2 O 2 and b-oxidation of fatty acids, and their functions are tightly regulated by multiple factors involved in peroxisome biogenesis, including protein transport. This study describes the isolation of an embryonic lethal Arabidopsis thaliana mutant, aberrant peroxisome morphology9 (apem9), which is compromised in protein transport into peroxisomes. The APEM9 gene was found to encode an unknown protein. Compared with apem9 having the nucleotide substitution, the knockdown mutants showed severe defects in peroxisomal functions and plant growth. We showed that expression of APEM9 altered PEROXIN6 (PEX6) subcellular localization from the cytosol to peroxisomes. In addition, we showed that PEX1 and PEX6 comprise a heterooligomer and that this complex was recruited to peroxisomal membranes via protein-protein interactions of APEM9 with PEX6. These findings show that APEM9 functions as an anchoring protein, similar to Pex26 in mammals and Pex15p in yeast. Interestingly, however, the identities of amino acids among these anchoring proteins are quite low. These results indicate that although the association of the PEX1-PEX6 complex with peroxisomal membranes is essential for peroxisomal functions, the protein that anchors this complex evolved uniquely in plants.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.