As the heights of high-rise buildings increase, their building area and elevation area also increase, consequently increasing their yearly energy consumption. Energy efficiency has become an even more important issue, especially when glass is used for a building's exterior. In this study, the life-cycle cost (LCC) of the exterior glass of high-rise buildings was analyzed from the perspective of energy efficiency and CO 2 emissions. First, the LCC was analyzed according to changes in the selected types of glass. Reflective + Low-E (Type 1), double Low-E + Argon (Type 2), and triple Low-E + Argon (Type 3), which satisfy green building certification criteria and were used in the past for high-rise buildings in Korea, were selected as the exterior glass types. These types of exterior glass were applied to a case building and compared with the Low-E glass that was the existing glass type of a case building. The economic benefit of selected glasses for 40 years was greater in the order of Type 1, Type 3, and Type 2 compared to the existing glass. Second, these types of glass were applied to each orientation of the building. By changing the glass according to building orientation it is shown that in the east, west, and north, Type 1 was most economical, whereas Type 3 was most economical in the south. The results of this study will contribute to the improvement of energy efficiency, CO 2 emissions reduction, and cost efficiency of future high-rise buildings.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.