Mesenchymal stem cells (MSC) that can differentiate to various connective tissue cells may be useful for autologous cell transplantation to defects of bone, cartilage, and tendon, if MSC can be expanded in vitro. However, a short life span of MSC and a reduction in their differentiation potential in culture have limited their clinical application. The purpose of this study is to identify a growth factor(s) involved in self-renewal of MSC and the maintenance of their multilineage differentiation potential. Fibroblast growth factor-2 (FGF-2) markedly increased the growth rate and the life span of rabbit, canine, and human bone marrow MSC in monolayer cultures. This effect of FGF-2 was more prominent in low-density cultures than in high-density cultures. In addition, all MSC expanded in vitro with FGF-2, but not without FGF-2, differentiated to chondrocytes in pellet cultures. The FGF+ MSC also retained the osteogenic and adipogenic potential throughout many mitotic divisions. These findings suggest that FGFs play a crucial role in self-renewal of MSC.
The nuclear receptors CAR and PXR activate hepatic genes in response to therapeutic drugs and xenobiotics, leading to the induction of drug-metabolizing enzymes, such as cytochrome P450. Insulin inhibits the ability of FOXO1 to express genes encoding gluconeogenic enzymes. Induction by drugs is known to be decreased by insulin, whereas gluconeogenic activity is often repressed by treatment with certain drugs, such as phenobarbital (PB). Performing cell-based transfection assays with drug-responsive and insulin-responsive enhancers, glutathione S-transferase pull down, RNA interference (RNAi), and mouse primary hepatocytes, we examined the molecular mechanism by which nuclear receptors and FOXO1 could coordinately regulate both enzyme pathways. FOXO1 was found to be a coactivator to CAR-and PXR-mediated transcription. In contrast, CAR and PXR, acting as corepressors, downregulated FOXO1-mediated transcription in the presence of their activators, such as 1,4-bis[2-(3,5-dichloropyridyloxy)]benzene (TCPOBOP) and pregnenolone 16␣-carbonitrile, respectively. A constitutively active mutant of the insulin-responsive protein kinase Akt, but not the kinase-negative mutant, effectively blocked FOXO1 activity in cell-based assays. Thus, insulin could repress the receptors by activating the Akt-FOXO1 signal, whereas drugs could interfere with FOXO1-mediated transcription by activating CAR and/or PXR. Treatment with TCPOBOP or PB decreased the levels of phosphoenolpyruvate carboxykinase 1 mRNA in mice but not in Car ؊/؊ mice. We conclude that FOXO1 and the nuclear receptors reciprocally coregulate their target genes, modulating both drug metabolism and gluconeogenesis.Liver plays a major role in the metabolism of therapeutic drugs and environmental contaminants. It is endowed with a mechanism to induce hepatic enzymes, leading to increased detoxification and elimination of those xenobiotics. Drug induction is generally regulated by transcriptional activation of hepatic genes encoding drug-metabolizing enzymes, such as cytochrome P450s (CYPs) and specific transferases. Acting as the principal transcription factors which also form complexes with RXR, the nuclear receptors CAR and PXR play a central role in induction by binding to the phenobarbital (PB)-and xenobiotic-responsive enhancer modules PBREM and XREM (5,6,11,12,18,46,53), respectively, and activating transcription of their target genes, such as CYP genes, in response to a distinct but overlapping group of xenobiotics (23, 36, 50). However, induction is heavily influenced by endocrine conditions; glucocorticoid hormone, for example, augments CYP induction by PB (31). In contrast, insulin is known to repress the induction of drug-metabolizing activity by certain drugs and in diabetic livers (44,49,56). Insulin treatment either eliminated or significantly reduced PB induction of CYP2B in rat primary hepatocytes (17,42,58). Hepatic CYP2B, CYP3A, and CYP4A were increased in experimentally generated diabetic rats and mice and were reduced to normal levels by insulin treatmen...
These findings suggest that transplanted mesenchymal stem cells could survive and differentiate into periodontal tissue cells, resulting in enhancement of periodontal tissue regeneration.
The nuclear receptor constitutive active/androstane receptor (CAR) is sequestered in the cytoplasm of liver cells before its activation by therapeutic drugs and xenobiotics such as phenobarbital (PB) and 1,4-Bis[2-(3,5-dichloropyridyloxy)]benzene (TCPOBOP) in mouse liver, the regulatory mechanism of which remains poorly understood. Given the finding that epidermal growth factor repressed PB activation of CAR-mediated transcription (Mol Pharmacol 65:172-180, 2004), here we investigated the regulatory role of hepatocyte growth factor (HGF)-mediated signal in sequestering CAR in the cytoplasm of mouse primary hepatocytes. HGF treatment effectively repressed the induction of endogenous CYP2b10 gene by PB and TCPOBOP in mouse primary hepatocytes. On the other hand, inhibition by 1,4-diamino-2,3-dicyano-1,4-bis(methylthio)butadiene (U0126) of an HGF downstream kinase mitogenactivated protein kinase kinase (MEK) induced the Cyp2b10 gene and up-regulated the CAR-regulated promoter activity in the absence of TCPOBOP. HGF treatment increased phosphorylation of extracellular signal-regulated kinase (ERK) 1/2 in the cytosol, thus decreasing the TCPOBOP-induced nuclear accumulation of CAR. In contrast, U0126 dephosphorylated ERK1/2 and increased nuclear CAR accumulation in the absence of TCPOBOP. These results are consistent with the conclusion that the HGF-dependent phosphorylation of ERK1/2 is the endogenous signal that sequesters CAR in the cytoplasm of mouse primary hepatocytes.The nuclear constitutive active/androstane receptor CAR is a xeno-sensing transcription factor that regulates numerous hepatic genes in response to a large group of chemicals and therapeutic drugs. Phenobarbital (PB) represents this group of xenobiotics; it not only induces drug metabolism and secretion but also elicits pleiotropic effects on liver functions. These effects include metabolism and secretion of endobiotics (such as bilirubin), and changes in energy metabolism, cell growth, cell-cell communication, and tumor promotion (Honkakoski and Negishi, 1998a). Activation of CAR by drugs such as PB is paramount to elicit these effects by up-or down-regulating the genes that encode the key proteins and enzymes for these liver functions (Kodama and Negishi, 2006). As the function of CAR has expanded, deciphering the molecular mechanism of its activation by drugs is an urgent subject of current investigations.Mouse hepatocytes retain CAR in the cytoplasm, thus making the nuclear translocation an initial step of its acti-
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.