Mesenchymal stem cells (MSC) that can differentiate to various connective tissue cells may be useful for autologous cell transplantation to defects of bone, cartilage, and tendon, if MSC can be expanded in vitro. However, a short life span of MSC and a reduction in their differentiation potential in culture have limited their clinical application. The purpose of this study is to identify a growth factor(s) involved in self-renewal of MSC and the maintenance of their multilineage differentiation potential. Fibroblast growth factor-2 (FGF-2) markedly increased the growth rate and the life span of rabbit, canine, and human bone marrow MSC in monolayer cultures. This effect of FGF-2 was more prominent in low-density cultures than in high-density cultures. In addition, all MSC expanded in vitro with FGF-2, but not without FGF-2, differentiated to chondrocytes in pellet cultures. The FGF+ MSC also retained the osteogenic and adipogenic potential throughout many mitotic divisions. These findings suggest that FGFs play a crucial role in self-renewal of MSC.
The mammalian master molecular clock consisting of several clock gene products in the suprachiasmatic nucleus (SCN) drives circadian rhythms in behaviour and physiology. Molecular clocks consisting of the same components also exist in various peripheral organs. DEC1 and DEC2, basic helix-loop-helix transcription factors, were recently reported to be involved in the central clock in the SCN. We examined the expression profile of DEC1 and DEC2 in the periphery and their roles in the regulation of oscillating target genes in the liver. Levels of DEC1 and DEC2 mRNA exhibited a day-night variation in various peripheral tissues of rats. In the liver, their expression was high during the subjective night. Transfection assays showed that DEC2, but not DEC1, suppressed the transcription of the cholesterol 7α α α α -hydroxylase gene ( CYP7A ), overwhelming the potent enhancement by D -site binding protein (DBP). Electrophoretic mobility shift assays indicated that DEC2 binds to the E-box (CACATG) at the -219/-214 region of CYP7A . The transcriptional activities of the other sterol metabolizing cytochorme P450s (Cyps), CYP8B and CYP51 , were also suppressed by DEC2 but not DEC1. DEC2, but not DEC1, works as a direct output mediator that transmits the circadian signals to the hepatic functions, including the CYP7A , CYP8B , and CYP51 expression.
Human bone-marrow mesenchymal stem cells have an important role in the repair of musculoskeletal tissues by migrating from the bone marrow into the injured site and undergoing differentiation. We investigated the use of autologous human serum as a substitute for fetal bovine serum in the ex vivo expansion medium to avoid the transmission of dangerous transfectants during clinical reconstruction procedures. Autologous human serum was as effective in stimulating growth of bone-marrow stem cells as fetal bovine serum. Furthermore, medium supplemented with autologous human serum was more effective in promoting motility than medium with fetal bovine serum in all cases. Addition of B-fibroblast growth factor to medium with human serum stimulated growth, but not motility. Our results suggest that autologous human serum may provide sufficient ex vivo expansion of human bone-marrow mesenchymal stem cells possessing multidifferentiation potential and may be better than fetal bovine serum in preserving high motility.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.