The standard technique to separately and simultaneously determine the carrier concentration per unit volume (N, cm ) and the mobility (μ) of doped inorganic single crystals is to measure the Hall effect. However, this technique has not been reported for bulk-doped organic single crystals. Here, the Hall effect in bulk-doped single-crystal organic semiconductors is measured. A key feature of this work is the ultraslow co-deposition technique, which reaches as low as 10 nm s and enables us to dope homoepitaxial organic single crystals with acceptors at extremely low concentrations of 1 ppm. Both the hole concentration per unit volume (N, cm ) and the Hall mobility (μ ) of bulk-doped rubrene single crystals, which have a band-like nature, are systematically observed. It is found that these rubrene single crystals have (i) a high ionization rate and (ii) scattering effects because of lattice disturbances, which are peculiar to this organic single crystal.
16-dione is a soluble precursor of pentacene, which can be converted into pentacene by irradiation in the solid-state. Its photoconversion process in spin-coated films was monitored by UV-visible absorption and IR spectroscopy. A small amount of high-boiling-point additives in the chloroform spin-coating solution promoted photoconversion to obtain high quality films suitable for FETs. The FET mobilities showed a correlation with the additives' boiling points and dissolution abilities, indicating that the retainment of a semidry state during photoconversion is essential to the complete photoconversion. Photoirradiation conditions (irradiation intensity, duration and substrate temperature) were optimized to achieve a field-effect mobility of 0.86 cm 2 V À1 s À1 , comparable to the performance of vacuum-deposited pentacene films. The prepared films have a partially crystalline morphology different from that of vacuum-deposited films. The high FET mobility of the photoconverted film is attributed to continuously connected grain boundaries arising from partial crystallinity.
Hole mobility was evaluated by top-contact bottom gate field effect transistor and time resolved microwave conductivity measurements in 2,6-dithienylanthracene and hexyl-substituted 2,6-dithienylanthracene films prepared by spin-coating of their α-diketone precursors followed by photoirradiation, revealing enough high potentials for semiconducting films with charge carrier mobilities of 0.8-0.9 cm(2) V(-1) s(-1) in the photo-irradiated films.
a b s t r a c tThe effects of doping at concentrations at the ppm level in organic photovoltaic cells were clarified using simple n þ p-homojunctions. With doping from 0 to 10 ppm, the fill factor increased due to the appearance of majority carriers. From 10 to 100 ppm, the photocurrent density increased due to an increase in the built-in potential, i.e., the formation of an n þ p-homojunction. The photocurrent was increased by a factor of 1.3 by directly doping the photoactive co-deposited layer with acceptor molecules at a concentration of 100 ppm.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.