Background: Mild cognitive impairment (MCI) is a global-scale issue, due in large part to the rapidly growing elderly population. The main polyphenol contained in coffee beans, chlorogenic acid (CGA), improves attention in healthy individuals. The utility of CGAs for treating MCI, however, has not been evaluated. Objective: To determine the effects of continuous CGA intake on cognitive function, especially attention, in patients diagnosed with MCI. Methods: The study was a randomized controlled crossover trial including 34 patients with MCI. Participants were randomly divided into two groups: Those who first ingested a placebo beverage and those who first ingested an active beverage containing CGAs (553.6 mg/bottle) twice daily for 12 weeks. After a 4-week washout period, the subjects ingested the other beverage (i.e., placebo or active beverage) in the same manner. Endpoint measures included scores on the Japanese version of the Mini-Mental State Examination (MMSE), the Japanese version of the Alzheimer's Disease Assessment Scale-cognitive component (ADAS-cog) testing overall cognitive function, and the Japanese version of the Trail Making Test (TMT-A, TMT-B) testing attention, along with the results of blood tests to evaluate safety. Results: In the TMT-B test, participants had a significantly reduced number of errors while ingesting the CGA beverage as compared with the placebo beverage (p < 0.05), although there was no difference in test completion time. Scores in the MMSE, ADAS-cog, and TMT-A did not differ significantly between conditions. Conclusion: Continuous intake of CGAs appears to improve attention and executive function among cognitive functions in MCI.
-Postprandial secretion of insulin and glucose-dependent insulinotropic polypeptide (GIP) is differentially regulated by not only dietary carbohydrate but also fat. Recent studies have shown that the ingestion of diacylglycerol (DAG) results in lower postprandial insulin and GIP release than that of triacylglycerol (TAG), suggesting a possible mechanism for the antiobesity effect of DAG. The structural and metabolic characteristics of DAG are believed to be responsible for its beneficial effects. This study was designed to clarify the effect of 1-monoacylglycerol [oleic acid-rich (1-MO)], the characteristic metabolite of DAG, on postprandial insulin and GIP secretion, and the underlying mechanism. Dietary 1-MO dose dependently stimulated whole body fat utilization, and reduced high-fat diet-induced body weight gain and visceral fat accumulation in mice, both of which are consistent with the physiological effect of dietary DAG. Although glucose-stimulated insulin and GIP release was augmented by the addition of fat, coingestion of 1-MO reduced the postprandial hormone release in a dose-dependent manner. Either glucose or fatty acid transport into the everted intestinal sacs and enteroendocrine HuTu-80 cells was also reduced by the addition of 1-MO. Reduction of either glucose or fatty acid transport or the nutrient-stimulated GIP release by 1-MO was nullified when the intestine was pretreated with sodium-glucose cotransporter-1 (SGLT-1) or fatty acid translocase (FAT)/CD36 inhibitor. We conclude that dietary 1-MO attenuates postprandial GIP and insulin secretion by reducing the intestinal transport of the GIP secretagogues, which may be mediated via SGLT-1 and FAT/CD36. Reduced secretion of these anabolic hormones by 1-MO may be related to the antiobesity effect of DAG.FAT/CD36; indirect calorimetry; insulin; intestinal transport; SGLT-1 THE WIDESPREAD PREVALENCE of obesity is now a worldwide health problem. Excess adiposity, especially excess abdominal fat accumulation, increases the risk of morbidity from a number of diseases, including diabetes, hypertension, and cardiovascular diseases and is also associated with a greater risk for certain cancers (25). Therefore, improvement of lifestyle, particularly dietary content, is often recommended for the primary prevention and treatment of these diseases. Diacylglycerol (DAG), which consists of 1,3-DAG and 1,2(2,3)-DAG is contained in natural edible oils at a level of 2-10% (8) and is consumed in the daily human diet. Prior studies in animals and humans have shown that dietary DAG oil composed mainly of 1,3-DAG leads to the suppression of body fat accumulation, body weight loss, improved glucose tolerance, and lower postprandial lipemia compared with that of triacylglycerol (TAG), which has a similar fatty acid composition (32, 39). Recent studies have shown that the ingestion of a 1,3-DAG-rich diet results in a lower postprandial insulin response than that of TAG oil in humans (33, 40). Since a high-level postprandial insulin response has been shown to be associate...
Abstract. In contrast to those of other mammals, canine oocytes are ovulated at the germinal vesicle (GV) stage and then progress to the metaphase II (MII) stage in the oviduct. In other species, oocytes at the MII are widely used for in vitro fertilization or as recipients in somatic cell nuclear transfer. Many researchers have tried to improve the in vitro maturation (IVM) of canine oocytes. However, the proportion of MII oocytes remains low, resulting in poor efficiency of embryogenesis in vitro. This leads us to the possibility that the in vitro cytoplasmic maturation of canine oocytes is insufficient. Furthermore, the optimal culture period for IVM of canine oocytes is controversial, and physiological evaluation is required to improve canine IVM. We show here the time-dependent changes in mitogen-activated protein kinase (MAPK) and p34 cdc2 kinase activities in canine oocytes during IVM, since it is well known that both MAPK and p34 cdc2 kinase are activated following meiotic progression and show high activities in the MII stage in other species. Immediately after collection from ovaries, most oocytes were arrested at the GV stage, which was maintained until 24 h of culture. At 48 h of culture, more than half of the oocytes had progressed beyond the MI stage. A higher proportion of MII oocytes were observed with 72 h of culture compared with other culture periods. MAPK activity was found to increase in a time-dependent manner and reached a plateau at 72 h of culture. The level of p34 cdc2 kinase activity also increased in a time-dependent manner, with its maximal level observed after 72 h of culture. Activity was decreased with 96 h of culture, although there was no significant difference in the proportion of MII oocytes between 72 and 96 h. Our data thus show that the optimal culture period for IVM of canine oocytes is 72 h because both MAPK and p34 cdc2 kinase showed high activities at that time. Key words: Canine, In vitro maturation, Kinase, Oocyte (J. Reprod. Dev. 55: [116][117][118][119][120] 2009) ocytes in most mammalian species progress to the metaphase II (MII) stage in follicles and are then ovulated into the oviduct; however, canine oocytes are ovulated as immature oocytes at the germinal vesicle (GV) stage. These ovulated canine oocytes require at least 48 h to progress to the MII stage within the oviduct [1,2]. Many researchers have reported the in vitro maturation (IVM) of canine oocytes, and the discussion in the literature now focuses on how to improve development. For example, the age of the donor bitch [3], oocyte diameter [4,5], protein [6][7][8][9][10] and hormonal supplementation of maturation media [11][12][13][14][15][16] have all been examined. However, the proportion of MII oocytes remains low (0-43.4%) [9,[15][16][17][18][19][20], and a number of essential issues have yet to be resolved.One of these issues is the optimal culture period for IVM of canine oocytes. When oocytes are recovered directly from ovarian follicles and cultured in vitro, some progress to the MII stage afte...
Background Given the major role of glucose-dependent insulinotropic polypeptide (GIP) in the regulation of adiposity, this study examined the effects induced by a diet based on the Japanese tradition (SMART WASHOKU) on the visceral fat area (VFA) and GIP secretions. Methods Overweight/obese men ( n = 21; mean age, 41.0 ± 9.0 years; mean BMI, 25.2 ± 2.0 kg/m 2 ) without diabetes were placed on either a SMART WASHOKU or control meal for 2 weeks, in a randomized, cross-over setup with a four-week washout period. Results For the meal tolerance test, blood samples were collected at 0, 30, 60, 120, 180, and 240 min post-meal, followed by measuring blood glucose, insulin, GIP, and glucagon-like peptide-1 (GLP-1) levels. Relative to a control meal, SMART WASHOKU meal yielded significantly lower plasma postprandial GIP concentrations (AUC: 700.0 ± 208.0 vs. 1117.0 ± 351.4 pmol/L・4 h, P < 0.05); however, between meals, there was no significant difference in the levels of GLP-1, peptide YY, and ghrelin. Compared to the control meal, SMART WASHOKU intervention significantly reduced VFA and the levels of LDL-cholesterol, triglyceride, and HbA1c after the chronic meal intervention. Conclusions In conclusion, a SMART WASHOKU meal may decrease VFA and improve metabolic parameters in overweight/obese men, possibly via suppressing GIP secretion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.