We examined the possibility that the expression of adhesion molecules is regulated differently in cultured astrocytes from stroke-prone spontaneously hypertensive rats (SHRSP/IZM) rats than in those from Wistar Kyoto rats (WKY/IZM) by tumor necrosis factor-alpha (TNF-α) or hypoxia and reoxygenation (H/R) and the inhibitory effects of apigenin. It was found that the expression of vascular cell adhesion molecule-1 (VCAM-1) by TNF-α in astrocytes isolated from SHRSP/IZM was increased compared with that in WKY/IZM. The expression of monocyte chemotactic protein-1 (MCP-1) mRNA induced by H/R in SHRSP/IZM astrocytes was increased compared with that in normal oxygen concentrations. Apigenin strongly attenuated TNF-α-induced VCAM-1 mRNA and protein expression and suppressed the adhesion of U937 cells and SHRSP/IZM astrocytes. These results suggest that the expression levels of adhesion molecules during H/R affect disease outcome and can drive SHRSP/IZM to stroke. It is suggested that apigenin regulates adhesion molecule expression in reactive astrocytes during ischemia.
Stroke-prone spontaneously hypertensive rats (SHRSP/IZM) develop severe hypertension, and more than 95% of them die of cerebral stroke, making them widely used as models of experimental cerebral ischemia. The neurons of SHRSP/IZM are more susceptible to hypoxia and reoxygenation (H/R) than those of Wistar Kyoto (WKY/IZM) rats. In particular, cerebral ischemia strongly induces neuronal death in SHRSP/IZM. We examined the effect of high dose vitamin E on the levels of glutathione (GSH) and cell death during H/R in neurons isolated from SHRSP/IZM and WKY/IZM rats. The neurons of SHRSP/IZM were more vulnerable and lost more GSH than those of the WKY/IZM rats. High dose vitamin E induced the expression of gamma glutamylcystenyl synthase (γ-GCS) mRNA, increased GSH levels, reduced neutral sphingomyelinase (N-SMase) activity, and strongly prevented neuronal death. The level of GSH was significantly lower in SHRSP/IZM than WKY/IZM neurons following exposure to hypoxia and H/R. On the other hand, the activity of N-SMase was increased in SHRSP/IZM compared to the WKY/IZM neurons. These results suggest the decrease in GSH levels of SHRSP/IZM neurons to be associated with neuronal vulnerability and that GSH, production of which is induced by a high dose of vitamin E.
Stroke-prone spontaneously hypertensive rats (SHRSP/IZM) develop severe hypertension, and more than 95% of them die of cerebral stroke, making them widely used as models of experimental cerebral ischemia. The neurons of SHRSP/IZM are more susceptible to hypoxia and reoxygenation (H/R) than those of Wistar Kyoto (WKY/IZM) rats. In particular, cerebral ischemia strongly induces neuronal death in SHRSP/IZM. We examined the effect of high dose vitamin E on the levels of glutathione (GSH) and cell death during H/R in neurons isolated from SHRSP/IZM and WKY/IZM rats. The neurons of SHRSP/IZM were more vulnerable and lost more GSH than those of the WKY/IZM rats. High dose vitamin E induced the expression of gamma glutamylcystenyl synthase (γ-GCS) mRNA, increased GSH levels, reduced neutral sphingomyelinase (N-SMase) activity, and strongly prevented neuronal death. The level of GSH was significantly lower in SHRSP/IZM than WKY/IZM neurons following exposure to hypoxia and H/R. On the other hand, the activity of N-SMase was increased in SHRSP/IZM compared to the WKY/IZM neurons. These results suggest the decrease in GSH levels of SHRSP/IZM neurons to be associated with neuronal vulnerability and that GSH, production of which is induced by a high dose of vitamin E.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.