The genotypes of photoperiod response genes Ppd-B1 and Ppd-D1 in Japanese wheat cultivars were determined by a PCR-based method, and heading times were compared among genotypes. Most of the Japanese wheat cultivars, except those from the Hokkaido region, carried the photoperiod-insensitive allele Ppd-D1a, and heading was accelerated 10.3 days compared with the Ppd-D1b genotype. Early cultivars with Ppd-D1a may have been selected to avoid damage from preharvest rain. In the Hokkaido region, Ppd-D1a frequency was lower and heading date was late regardless of Ppd-D1 genotype, suggesting another genetic mechanism for late heading in Hokkaido cultivars. In this study, only 11 cultivars proved to carry Ppd-B1a, and all of them carried another photoperiod-insensitive allele, Ppd-D1a. The Ppd-B1a/Ppd-D1a genotype headed 6.7 days earlier than the Ppd-B1b/Ppd-D1a genotype, indicating a significant effect of Ppd-B1a in the genetic background with Ppd-D1a. Early-maturity breeding in Japan is believed to be accelerated by the introduction of the Ppd-B1a allele into medium-heading cultivars carrying Ppd-D1a. Pedigree analysis showed that Ppd-B1a in three extra-early commercial cultivars was inherited from ‘Shiroboro 21’ by early-heading Chugoku lines bred at the Chugoku Agriculture Experimental Station.
Cereal Chem. 74(1):72-74In our wheat breeding program to introduce the low amylose character of Tanikei A6099 to elite lines, five waxy lines were unexpectedly obtained from 249 doubled haploid lines of the F 1 hybrid of Saikai 168 × Tanikei A6099. The amylose content of all the waxy lines was <1% and the blue value was <0.1. Starch granule-bound proteins were extracted and subjected to modified sodium dodecyl sulfate polyacrylamide gel electrophoresis.The waxy lines lacked the Wx protein. Starch paste viscosity measurements gave pasting profiles of waxy wheat starch that were quite different from those of nonwaxy wheats but similar to those of waxy maize. However, the peak viscosity of waxy wheats was much higher than that of the waxy maize.
Pre-harvest sprouting, the germination of mature seeds on the mother plant under moist condition, is a serious problem in cereals. To investigate the effect of reduced abscisic acid (ABA) catabolism on germination in hexaploid wheat (Triticum aestivum L.), we cloned the wheat ABA 8′-hydroxyase gene which was highly expressed during seed development (TaABA8′OH1) and screened for mutations that lead to reduced ABA catabolism. In a screen for natural variation, one insertion mutation in exon 5 of TaABA8′OH1 on the D genome (TaABA8′OH1-D) was identified in Japanese cultivars including ‘Tamaizumi’. However, a single mutation in TaABA8′OH1-D had no clear effect on germination inhibition in double haploid lines. In a screen for a mutation, one deletion mutant lacking the entire TaABA8′OH1 on the A genome (TaABA8′OH1-A), TM1833, was identified from gamma-ray irradiation lines of ‘Tamaizumi’. TM1833 (a double mutant in TaABA8′OH1-A and TaABA8′OH1-D) showed lower TaABA8′OH1 expression, higher ABA content in embryos during seed development under field condition and lower germination than those in ‘Tamaizumi’ (a single mutant in TaABA8′OH1-D). These results indicate that reduced ABA catabolism through mutations in TaABA8′OH1 may be effective in germination inhibition in field-grown wheat.
In the wheat (Triticum aestivum L.) cultivar ‘Zenkoujikomugi’, a single nucleotide polymorphism (SNP) in the promoter of MOTHER OF FT AND TFL1 on chromosome 3A (MFT-3A) causes an increase in the level of gene expression, resulting in strong grain dormancy. We used a DNA marker to detect the ‘Zenkoujikomugi’-type (Zen-type) SNP and examined the genotype of MFT-3A in Japanese wheat varieties, and we found that 169 of 324 varieties carry the Zen-type SNP. In Japanese commercial varieties, the frequency of the Zen-type SNP was remarkably high in the southern part of Japan, but low in the northern part. To examine the relationship between MFT-3A genotype and grain dormancy, we performed a germination assay in three wheat-growing seasons. On average, the varieties carrying the Zen-type SNP showed stronger grain dormancy than the varieties carrying the non-Zen-type SNP. Among commercial cultivars, ‘Iwainodaichi’ (Kyushu), ‘Junreikomugi’ (Kinki-Chugoku-Shikoku), ‘Kinuhime’ (Kanto-Tokai), ‘Nebarigoshi’ (Tohoku-Hokuriku), and ‘Kitamoe’ (Hokkaido) showed the strongest grain dormancy in each geographical group, and all these varieties, except for ‘Kitamoe’, were found to carry the Zen-type SNP. In recent years, the number of varieties carrying the Zen-type SNP has increased in the Tohoku-Hokuriku region, but not in the Hokkaido region.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.