Incretin therapies have received much attention because of their tissue-protective effects, which extend beyond those associated with glycemic control. Cancer is a primary cause of death in patients who have diabetes mellitus. We previously reported antiprostate cancer effects of the glucagonlike peptide-1 (GLP-1) receptor (GLP-1R) agonist exendin-4 (Ex-4). Breast cancer is one of the most common cancers in female patients who have type 2 diabetes mellitus and obesity. Thus, we examined whether GLP-1 action could attenuate breast cancer. GLP-1R was expressed in human breast cancer tissue and MCF-7, MDA-MB-231, and KPL-1 cell lines. We found that 0.1 to 10 nM Ex-4 significantly decreased the number of breast cancer cells in a dose-dependent manner. Although Ex-4 did not induce apoptosis, it attenuated breast cancer cell proliferation significantly and dose-dependently. However, the dipeptidyl peptidase-4 inhibitor linagliptin did not affect breast cancer cell proliferation. When MCF-7 cells were transplanted into athymic mice, Ex-4 decreased MCF-7 tumor size in vivo. Ki67 immunohistochemistry revealed that breast cancer cell proliferation was significantly reduced in tumors extracted from Ex-4-treated mice. In MCF-7 cells, Ex-4 significantly inhibited nuclear factor κB (NF-κB ) nuclear translocation and target gene expression. Furthermore, Ex-4 decreased both Akt and IκB phosphorylation. These results suggest that GLP-1 could attenuate breast cancer cell proliferation via activation of GLP-1R and subsequent inhibition of NF-κB activation.
Cancer is currently one of the major causes of death in patients with type 2 diabetes mellitus. We previously reported the beneficial effects of the glucagon-like peptide-1 receptor agonist exendin-4 against prostate and breast cancer. In the present study, we examined the anti-cancer effect of the sodium-glucose cotransporter 2 (SGLT2) inhibitor ipragliflozin using a breast cancer model. In human breast cancer MCF-7 cells, SGLT2 expression was detected using both RT-PCR and immunohistochemistry. Ipragliflozin at 1-50 μM significantly and dose-dependently suppressed the growth of MCF-7 cells. BrdU assay also revealed that ipragliflozin attenuated the proliferation of MCF-7 cells in a dose-dependent manner. Because the effect of ipragliflozin against breast cancer cells was completely canceled by knocking down SGLT2, ipragliflozin could act via inhibiting SGLT2. We next measured membrane potential and whole-cell current using the patch clamp technique. When we treated MCF-7 cells with ipragliflozin or glucose-free medium, membrane hyperpolarization was observed. In addition, glucose-free medium and knockdown of SGLT2 by siRNA suppressed the glucose-induced whole-cell current of MCF-7 cells, suggesting that ipragliflozin inhibits sodium and glucose cotransport through SGLT2. Furthermore, JC-1 green fluorescence was significantly increased by ipragliflozin, suggesting the change of mitochondrial membrane potential. These findings suggest that the SGLT2 inhibitor ipragliflozin attenuates breast cancer cell proliferation via membrane hyperpolarization and mitochondrial membrane instability.
Background: Frailty is broadly characterized by vulnerability and decline in physical, mental and social activities and is more common in elderly patients with type 2 diabetes mellitus (T2DM). Frailty is closely associated with nutrition, muscle strength, inflammation, and hormones etc. In hormones, dehydroepiandrosterone sulfate (DHEA-S) and cortisol are suggested to be such candidates affecting frailty. Little investigation has been performed using a wider range of measures of frailty to clarify risk factors for frailty including the above two hormones. Methods: We performed a cross-sectional study to investigate the risk factors for frailty in elderly T2DM patients (n = 148; ≥65 years), using a broad assessment, the clinical frailty scale. We compared parameters between the nonfrail and frail groups using the unpaired t and Mann-Whitney U tests. The Jonckheere-Therpstra test was used to identify relationships with the severity of frailty, and risk factors were identified using binary regression analysis. Results: Simple regression analysis identified a number of significant risk factors for frailty, including DHEAS < 70 μg/dL and cortisol/DHEA-S ratio ≥ 0.2. Multiple regression analysis showed that low albumin (< 4.0 g/dl) (odds ratio [OR] = 5.79, p < 0.001), low aspartate aminotransferase (AST) activity (< 25 IU/L) (OR = 4.34, p = 0.009), and low body mass (BM) (< 53 kg) (OR = 3.85, p = 0.012) were independent risk factors for frailty. A significant decrease in DHEA-S and a significant increase in the cortisol/DHEA-S ratio occurred alongside increases in the severity of frailty. DHEA-S concentration positively correlated with both serum albumin and BM. Conclusions: Hypoalbuminemia, low AST, and low BM are independent risk factors for frailty in elderly T2DM patients, strongly implying relative malnutrition in these frail patients. DHEA-S may be important for the maintenance of liver function and BM. A decrease in DHEA-S and an increase in the cortisol/DHEAS ratio may be involved in the mechanism of the effect of malnutrition in elderly T2DM patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.