The study investigated the effect of turning frequency on survival of fecal indicator pathogens (E. coli, Enterococcus spp., Salmonella spp. and helminth eggs) during fecal sludge (FS) co-composting with sawdust. Dewatered FS was mixed with sawdust and composted on a pilot scale using different turning frequencies—i.e., 3 days (3TF), 7 days (7TF), and 14 days (14TF). Composting piles were monitored weekly for survival of fecal indicator microorganisms and evolution of selected physical and chemical characteristics for 14 weeks. Our results show that turning frequency has a statistically significant (p < 0.05) effect on pathogen inactivation in FS compost. The 3TF piles exhibited shorter pathogen inactivation periods (8 weeks) than 7TF and 14TF piles (10 weeks). Temperature-time was found to be the major factor responsible for the survival of pathogens in FS composting piles, followed by indigenous microbial activities and toxic by-products (monitored as NH4+-N). Our study findings suggest that even at low composting temperatures, the high turning frequency can enhance pathogen inactivation. This is a significant finding for composting activities in some rural areas where suitable organic solid waste for co-composting with FS to attain the recommended high thermophilic conditions could be greatly lacking.
The emptying and transport of faecal sludge (FS) is a fundamental aspect of the sanitation service chain and is mostly carried out by private operators who usually face a lot of challenges. Our review assessed how influencing factors and challenges FS emptiers face are linked and in turn how they act as barriers to improvement initiatives. We conducted a systematic review of peer-reviewed journals on FS emptying in sub-Saharan Africa, South and Southeast Asia published between January 2002 and December 2021. Amongst the 37 journals reviewed, accessibility was mostly documented (n = 18) as a factor which affected choice of emptying method, followed by cost (n = 14), quality of service (n = 13) and then sludge thickness (n = 8). We grouped the types of challenges identified from the publications into five categories of financial, technical and institutional (n = 14, each), followed by health (n = 12) and then social challenges (n = 8). Discussions on initiatives (n = 13) used to improve the emptying business were limited to Cost/affordability of sanitation services and access to finance by FS emptiers, which were noted to be the major barriers to effective implementation of these strategies. This review identified the need for sensitizing the public on FS emptying, financial modelling of manual emptying business and a need to study the relationship between perceptions and emptying behavior of users.
Globally, about 2.7 billion people depend on onsite sanitation systems (OSS) (e.g., septic tanks) for their sanitation needs. Although onsite sanitation systems help in providing primary treatment for domestic wastewater, they don’t effectively remove nutrients, pathogens, and other inorganic contaminants. Previous studies have posited that the use of post treatment systems which incorporate biochar leads to improved contaminant removal efficiency. However, the mechanism through which contaminants are removed and factors potentially affecting the removal are still understudied. To fill this knowledge gaps, this review discusses factors which affect efficiency of biochar in removing contaminants found in onsite domestic wastewater, modifications applied to improve the efficiency of biochar in removing contaminants, mechanisms through which different contaminants are removed and constraints in the use of biochar for onsite wastewater treatment. It was noted that the removal of contaminants involves a combination of mechanisms which include adsorption, filtration, biodegradation, ion exchange, pore entrapment. The combination of these mechanisms is brought about by the synergy between the properties of biochar and microbes trapped in the biofilm on the surface of the biochar. Future areas of research such as the modification of biochar, use of biochar in the removal of antibiotic resistant genes (ARGs), application of wet carbonization methods and resistance of biochar to physical disintegration are also discussed. This study provides useful information that can be applied in the use of biochar for the treatment of wastewater and guide future design of treatment systems for optimized treatment performance.
Introduction: Faecal sludge management (FSM) in urban areas of low-and middle-income countries (LMICs) is not properly implemented due to inaccessibility of sanitation facilities and high faecal sludge (FS) emptying costs, amongst others. Unlike in solid waste and fresh human excreta, use of black soldier fly larvae (BSFL) in treatment of FS from pit latrines - which are the most common sanitation facilities in urban areas of LMICs - has not yet been explored. Moreover, the optimal conditions for efficient FS degradation, such as moisture content, feeding rate and larval density are not yet well known. Against this backdrop, the overarching aim of this study was to determine the effectiveness of BSFL in treating FS under different conditions of moisture content, feeding rate and larval density. Also, the quality of residue left after treatment was assessed.Methods: FS samples were collected from lined and unlined pit latrines in Bwaise I parish in Kampala, Uganda and experiments were set up to feed 10-day old larvae.Results and Discussion: The optimum feeding rate, larval density and moisture content were found to be 50 mg/larvae/day, 1.33 larvae/cm2 and 60%, respectively. The reduction efficiency at optimum conditions were 72% and 66% for FS from lined and unlined pit latrines, respectively. It was further noted that BSFL can feed on FS from pit latrines without dewatering it, hence there is no need for a dewatering unit. The properties of the residue left after treatment were within the allowable limit for use as compost except for helminth egg concentration. Thus, in informal urban settlements, BSFL can be applied for effective treatment of FS from pit latrines while generating good quality residue thereby providing an additional value chain in FSM.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.