BiFeO3 (BFO) nanopowders were synthesized at low temperatures via a hydrothermal process with the aid of triethanolamine (TEA) and their structural, optical, and photocatalytic properties were investigated. As a result of a strong reaction between TEA and Fe ions, pure BFO nanopowders without any secondary phases could be synthesized at temperatures as low as 130°C. BFO nanopowders exhibited a strong absorption in the visible‐light regime, which resulted in the efficient photocatalytic activity for decomposition of organic compounds.
In this study, we present a thermally stable multilayered transparent conducting oxide (TCO) functionalized for dye-sensitized solar cells (DSSCs). Nb-doped TiO2 (NTO) layers deposited on conventional Sn-doped In2O3 (ITO) substrates using pulsed laser deposition (PLD) enhanced the optical-to-electrical conversion efficiency of the DSSCs by as much as 17% compared to that of bare ITO-based DSSCs. The electrical properties and J−V characteristics of the multilayered NTO/ITO films showed that the improved cell performance was due to the facilitated charge injection from TiO2 to ITO that resulted from the formation of an ohmic contact with ITO, as well as the conserved high conductivity of ITO after the oxidizing annealing process. Moreover, the NTO/ITO-based DSSC exhibited higher efficiency than a F-doped SnO2(FTO)-based one, which demonstrates that optimization of multilayered NTO-based TCOs is a realistic approach for achieving highly efficient photoenergy conversion devices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.