The purpose of this study is to investigate the microstructure characteristics of the Ni1-xCux-BCZY anode and to analyze the carbon resistance by doping Cu into the Ni-BCZY anode. Ni1-xCux and BaCe0.7Zr0.1Y0.2O3-𝛿 (BCZY) powder were prepared by solid-state reaction with Ni1-xCux /BCZY = 60:40 wt%. The powder is calcined at a temperature of 700 °C, sintered at 1450 °C, and reduced by pure H2. The results of the Ni1-xCux-BCZY microstructure show an increase in the average particle size from 2.71 to 2.88 µm with increasing calcination time from 0.5 to 1.5 hours. Furthermore, the conductivity of Ni1-xCux-BCZY (x = 0.1) is lower than Ni1-xCux-BCZY (x = 0), this is associated with enhancement electron scattering, which correlatives with large metal particle obtained. The optimum conductivity of Ni1-xCux-BCZY(x=0.1) is obtained at a calcination time of 0.5 hours. Furthermore, NiCu anode can effectively increase the carbon resistance while using methane as a fuel.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.