Renal cell carcinoma (RCC) is increasing in incidence and one third of newly diagnosed cases already are metastatic. The metastatic spread of solid tumors renders RCC incurable by surgical resection and consequently more difficult to treat. New molecular-targeted therapies have played a pivotal role in RCC treatment. Unfortunately, tumors frequently develop resistance to these targeted therapies by activating bypass pathways in which alternative signaling or biochemical pathways are activated in response to targeted inhibition of a signaling pathway, allowing cancer cells to continue to survive. Although the advent of immunotherapy with checkpoint inhibitors has led to significant changes in the treatment landscape for advanced RCC, many issues remain to be resolved. For these reasons, there is an urgent need to develop novel therapies and new treatment paradigms for patients with RCC. Much research has been performed thus far in identifying novel targets and treatment strategies in RCC and many of these currently are under investigation and/or in clinical trials. In this article, we discuss therapeutic options in the management of RCC with a focus on the new therapeutic approaches currently investigated in research and for use in the clinic. We divide these potential novel therapies into five groups: nonbiologics, small-molecule drugs, biologics, immunomodulatory therapies, and peptide drugs. We also present some therapeutics and treatment paradigms.
Targeting activated fibroblasts, including myofibroblast differentiation, has emerged as a key therapeutic strategy in patients with idiopathic pulmonary fibrosis (IPF). However, there is no available therapy capable of selectively eradicating myofibroblasts or limiting their genesis. Through an integrative analysis of the regulator genes that are responsible for the activation of IPF fibroblasts, we noticed the phosphatidylinositol 4,5-bisphosphate (PIP2)-binding protein, myristoylated alanine-rich C-kinase substrate (MARCKS), as a potential target molecule for IPF. Herein, we have employed a 25-mer novel peptide, MARCKS phosphorylation site domain sequence (MPS), to determine if MARCKS inhibition reduces pulmonary fibrosis through the inactivation of PI3K/protein kinase B (AKT) signaling in fibroblast cells. We first observed that higher levels of MARCKS phosphorylation and the myofibroblast marker a-smooth muscle actin (a-SMA) were notably overexpressed in all tested IPF lung tissues and fibroblast cells. Treatment with the MPS peptide suppressed levels of MARCKS phosphorylation in primary IPF fibroblasts. A kinetic assay confirmed that this peptide binds to phospholipids, particularly PIP2, with a dissociation constant of 17.64 nM. As expected, a decrease of phosphatidylinositol (3,4,5)-trisphosphate pools and AKT activity occurred in MPS-treated IPF fibroblast cells. MPS peptide was demonstrated to impair cell proliferation, invasion, and migration in multiple IPF fibroblast cells in vitro as well as to reduce pulmonary fibrosis in bleomycin-treated mice in vivo. Surprisingly, we found that MPS peptide decreases a-SMA expression and synergistically interacts with nintedanib treatment in IPF fibroblasts. Our data suggest MARCKS as a druggable target in pulmonary fibrosis and also provide a promising antifibrotic agent that may lead to effective IPF treatments.
Cigarette smoking is a well-known risk factor for pulmonary diseases, including chronic obstructive pulmonary disease (COPD), asthma and pulmonary fibrosis. Despite major progress in dissecting the mechanisms associated with disease development and progression, findings only represent one aspect of multifaceted disease. A crucial consequence of this approach is that many therapeutic treatments often fail to improve or reverse the disease state as other conditions and variables are insufficiently considered. To expand our understanding of pulmonary diseases, omics approaches, particularly metabolomics, has been emerging in the field. This strategy has been applied to identify putative biomarkers and novel mechanistic insights. In this review, we discuss metabolic profiles of patients with COPD, asthma, and idiopathic pulmonary fibrosis (IPF) with a focus on the direct effects of cigarette smoking in altering metabolic regulation. We next present cell-and animal-based experiments and point out the therapeutic potential of targeting metabolic reprogramming in inflammatory lung diseases. In addition, the obstacles in translating these findings into clinical practice, including potential adverse effects and limited pharmacological efficacy, are also addressed.
Tobacco smoking is a well-known risk factor for both fibrogenesis and fibrotic progression; however, the mechanisms behind these processes remain enigmatic.Receptor tyrosine kinases (RTKs) have recently been reported to drive pro-fibrotic phenotypes in fibroblasts during pulmonary fibrosis (PF). Using a phospho-RTK array screen, we identified the receptor tyrosine kinase, AXL, as a top upregulated RTK in response to smoke. Both expression and signaling activity of AXL were indeed elevated in lung fibroblasts exposed to tobacco-smoke, whereas no significant change to the levels of a canonical AXL ligand, growth arrest-specific 6 (Gas6), was seen upon smoke treatment. Notably, we found that smoke-exposed human lung fibroblasts exhibited highly proliferative and invasive activities as well as was capable of inducing fibrotic lung lesions in mice. Conversely, genetic suppression of AXL in smokeexposed fibroblasts cells led to suppression of AXL downstream pathways and aggressive phenotypes. We further demonstrated that AXL interacted with myristoylated alanine-rich C kinase substrate (MARCKS) and cooperated with MARCKS in regulating downstream signaling activity and fibroblast invasiveness.Pharmacological inhibition of AXL with AXL-specific inhibitor R428 showed selectivity for smoke-exposed fibroblasts. In all, our data suggest that AXL is a potential marker for smoke-associated PF and that targeting of the AXL pathway is a potential therapeutic strategy in treating tobacco-smoking related PF.
Aim: This study aimed to compare mortality risks across uric acid (UA) levels between non-diabetes adults and participants with diabetes and to investigate the association between hyperuricemia and mortality risks in low-risk adults. Methods: We analyzed data from adults aged >18 years without coronary heart disease and chronic kidney disease (n = 29,226) from the National Health and Nutrition Examination Survey (1999–2010) and the associated mortality data (up to December 2011). We used the Cox proportional hazards models to examine the risk of all-cause and cause-specific (cardiovascular disease (CVD) and cancer) mortality at different UA levels between adults with and without diabetes. Results: Over a median follow-up of 6.6 years, 2069 participants died (495 from CVD and 520 from cancers). In non-diabetes adults at UA ≥ 5 mg/dL, all-cause and CVD mortality risks increased across higher UA levels (p-for-trend = 0.037 and 0.058, respectively). The lowest all-cause mortality risk in participants with diabetes was at the UA level of 5–7 mg/dL. We set the non-diabetes participants with UA levels of <7 mg/dL as a reference group. Without considering the effect of glycemic control, the all-cause mortality risk in non-diabetes participants with UA levels of ≥7 mg/dL was equivalent to risk among diabetes adults with UA levels of <7 mg/dL (hazard ratio = 1.44 vs. 1.57, p = 0.49). A similar result was shown in CVD mortality risk (hazard ratio = 1.80 vs. 2.06, p = 0.56). Conclusion: Hyperuricemia may be an indicator to manage multifaceted cardiovascular risk factors in low-risk adults without diabetes, but further studies and replication are warranted.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.