In this study, a novel nanoparticle system for paracellular transport was prepared using a simple and mild ionic-gelation method upon addition of a poly-gamma-glutamic acid (gamma-PGA) solution into a low-molecular-weight chitosan (low-MW CS) solution. The particle size and the zeta potential value of the prepared nanoparticles can be controlled by their constituted compositions. The results obtained by the TEM and AFM examinations showed that the morphology of the prepared nanoparticles was spherical in shape. Evaluation of the prepared nanoparticles in enhancing intestinal paracellular transport was investigated in vitro in Caco-2 cell monolayers. It was found that the nanoparticles with CS dominated on the surfaces could effectively reduce the transepithelial electrical resistance (TEER) of Caco-2 cell monolayers. After removal of the incubated nanoparticles, a gradual increase in TEER was noticed. The confocal laser scanning microscopy observations confirmed that the nanoparticles with CS dominated on the surface were able to open the tight junctions between Caco-2 cells and allowed transport of the nanoparticles via the paracellular pathways.
A novel method using a temperature-sensitive polymer (methylcellulose) to thermally gel aqueous alginate blended with distinct salts (CaCl2, Na2HPO4, or NaCl), as a pH-sensitive hydrogel was developed for protein drug delivery. It was noted that the salts blended in hydrogels may affect the structures of an entangled network of methylcellulose and alginate and have an effect on their swelling characteristics. The methylcellulose/alginate hydrogel blended with 0.7 M NaCl (with a gelation temperature of 32 degrees C) demonstrated excellent pH sensitivity and was selected for the study of release profiles of a model protein drug (bovine serum albumin, BSA). In the preparation of drug-loaded hydrogels, BSA was well-mixed to the dissolved aqueous methylcellulose/alginate blended with salts at 4 degrees C and then gelled by elevating the temperature to 37 degrees C. This drug-loading procedure in aqueous environment at low temperature may minimize degradation of the protein drug while achieving a high loading efficiency (95-98%). The amount of BSA released from test hydrogels was a function of the amount of alginate used in the hydrogels. The amount of BSA released at pH 1.2 from the test hydrogel with 2.5% alginate was relatively low (20%), while that released at pH 7.4 increased significantly (86%). In conclusion, the methylcellulose/alginate hydrogel blended with NaCl could be a suitable carrier for site-specific protein drug delivery in the intestine.
We found that intravenous paclitaxel is active against the metastases of human gastric cancer of peritoneal diffuse type, which warrants further investigations on optimizing the perioperative regimens with intravenous paclitaxel therapy for gastric cancer in patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.