Interleukin-10 (IL-10)-deficient (IL-10؊/؊ ) mice infected with Plasmodium chabaudi (AS) suffer a more severe disease and exhibit a higher rate of mortality than control C57BL/6 mice. Here, we show that a drop in body temperature to below 28°C and pronounced hypoglycemia of below
Doxorubicin is used extensively for chemotherapy of diverse types of cancer, yet the mechanism through which it inhibits proliferation of cancer cells remains unclear. Here we report that doxorubicin stimulates de novo synthesis of ceramide, which in turn activates CREB3L1, a transcription factor synthesized as a membrane-bound precursor. Doxorubicin stimulates proteolytic cleavage of CREB3L1 by Site-1 Protease and Site-2 Protease, allowing the NH2-terminal domain of CREB3L1 to enter the nucleus where it activates transcription of genes encoding inhibitors of the cell cycle, including p21. Knockdown of CREB3L1 mRNA in human hepatoma Huh7 cells and immortalized human fibroblast SV589 cells conferred increased resistance to doxorubicin, whereas overexpression of CREB3L1 in human breast cancer MCF-7 cells markedly enhanced the sensitivity of these cells to doxorubicin. These results suggest that measurement of CREB3L1 expression may be a useful biomarker in identifying cancer cells sensitive to doxorubicin.DOI:
http://dx.doi.org/10.7554/eLife.00090.001
5,6-Dimethylxanthenone-4-acetic acid (DMXAA) is a small molecule in the flavanoid class that has antitumor activity thought to be due to ability to induce high local levels of tumor necrosis factor (TNF)-A that disrupt established blood vessels within tumors. The drug has completed phase 1 testing in humans and is currently in phase 2 trials in combination with chemotherapy. Although characterized as a ''vascular disrupting agent,'' there are some studies suggesting that DMXAA also has effects on the immune system that are important for its efficacy. The goal of this study was to carefully define the immune effects of DMXAA in a series of murine lung cancer and mesothelioma cell lines with varying immunologic characteristics. We show that DMXAA efficiently activated tumor-associated macrophages to release a variety of immunostimulatory cytokines and chemokines, including TNF-A; IFN-inducible protein-10; interleukin-6; macrophage inflammatory protein-2; monocyte chemotactic protein-1; and regulated on activation, normal T-cell expressed, and secreted. DMXAA treatment was highly effective in both small and large flank tumors. Animals cured of tumors by DMXAA generated a systemic memory response and were resistant to tumor cell rechallenge. DMXAA treatment led to initial tumor infiltration with macrophages that was followed by an influx of CD8 + T cells. These CD8 + T cells were required for antitumor efficacy because tumor inhibitory activity was lost in nude mice, mice depleted of CD8 + T cells, and perforin knockout mice, but not in CD4 + T-cell-depleted mice. These data show that activation of tumor-associated macrophages by DMXAA is an efficient way to generate a CD8 + T-cell-dependent antitumor immune response even in animals with relatively nonimmunogenic tumors. Given these properties, DMXAA might also be useful in boosting other forms of immunotherapy. (Cancer Res 2005; 65(24): 11752-61)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.